VALUTAZIONE DI UN SISTEMA DI NAVIGAZIONE SATELLITARE PER ROBOT MOBILI AUTONOMI

SILVANO BETTINZANA
SOMMARIO

PARTE I: INTRODUZIONE..3

IL SISTEMA DI POSIZIONAMENTO GLOBALE NAVSTAR..5

1.1 Principi di funzionamento... 5

1.2 Obiettivi principali e prestazioni attese.. 6

1.3 Applicazioni del GPS.. 6

1.4 Configurazione del sistema GPS... 7
 1.4.1 Segmento spaziale.. 7
 1.4.2 Segmento di controllo.. 8
 1.4.3 Segmento utente.. 8

1.5 Segnali utilizzati nel sistema GPS.. 8

1.6 Prestazioni ottenibili in termini di accuratezza dei valori di posizione ... 10

1.7 Perturbazioni del segnale GPS: effetti atmosferici e problemi legati al multipath .. 11

1.8 Tecniche avanzate per la correzione degli errori.. 12
 1.8.1 GPS differenziale (DGPS)... 12
 1.8.2 Inseguimento della fase della portante (Carrier Tracking).. 12

1.9 Struttura e caratteristiche particolari del segnale GPS.. 13

1.10 Selective Availability (SA).. 14
 1.10.1 Implementazione della Selective availability.. 15

1.11 Descrizione di un ricevitore generico... 16

PARTE II: PROGETTO SPERIMENTALE...19

2.1 Caratteristiche generali del ricevitore utilizzato.. 19

2.2 Protocollo di comunicazione NMEA-0183... 20

2.3 Messaggi emessi dal ricevitore “DELORME TRIPMATE”.. 21
 2.3.1 Messaggio GGA (GPS Fix Data).. 22
 2.3.2 Messaggio GSA (GPS DOP and Active Satellites)... 23
 2.3.3 Messaggio RMC (Recommended Minimum Specific GPS Data)... 24

2.4 Descrizione del programma di visualizzazione e data logging.. 25
 2.4.1 Descrizione della finestra del programma.. 25
 2.4.2 Descrizione dei files generati.. 27
PARETE III: PROVE SPERIMENTALI ... 29

3.1 Prova 1 ... 31

3.2 Prova 2 ... 38

3.3 Prova 3 .. 45

3.4 Prova 4 .. 52

3.5 Prova 5 .. 59

3.6 Prova 6 .. 66

3.7 Prova 7 .. 68

3.8 Conclusioni .. 81
INTRODUZIONE

Il sistema di posizionamento globale (Global Positioning System) NAVSTAR, comunemente indicato con l’acronimo “GPS”, è un sistema di navigazione basato su un insieme di satelliti artificiali, la cui idea originale nacque nel 1973 per opera di un gruppo di militari del Dipartimento di Difesa (DOD) americano, e destinato a modificare in maniera sostanziale le tecniche di navigazione sul pianeta terra. Il sistema ha raggiunto la piena funzionalità a partire dal giorno 8 Dicembre 1993 in cui una flotta di 24 satelliti è divenuta completamente operativa. In questa relazione si prende in considerazione la possibilità di utilizzare il sistema NAVSTAR GPS per realizzare un sistema di navigazione da adottare nel campo della robotica mobile autonoma.

La relazione è divisa in tre parti:

• Parte I: analizza le caratteristiche del sistema NAVSTAR GPS.
• Parte II: analizza il lavoro sperimentale svolto e descrive il ricevitore GPS utilizzato.
• Parte III: mostra i risultati ottenuti dalle prove sperimentali.

Al termine della relazione sono allegati i documenti in seguito indicati che descrivono in maniera particolareggiata le caratteristiche del sistema GPS:

➢ “ICD-GPS-200, Revision C”: è il documento ufficiale redatto dall’ente gestore del sistema che descrive tutte le caratteristiche del segnale satellitare utilizzato nel GPS; nel documento sono descritti in modo completo i codici C/A-Code e P-Code.

➢ “Zodiac Serial Data Interface Specification”: è un documento redatto da “ROCKWELL INTERNATIONAL CORPORATION” che descrive le caratteristiche dell’interfaccia implementata a bordo del chipset “ZODIAC” prodotto da “ROCKWELL” ed utilizzato nel ricevitore valutato nelle prove sperimentali.

Per quanto riguarda la “Parte I” relativa alla descrizione del sistema NAVSTAR GPS si è fatto riferimento, oltre ai documento ufficiali descritti in precedenza, ai seguenti testi:

 Bradford W. Parkinson, James J. Spilker
 American Institute of Aeronautics and Astronautics, Inc.

➢ “GPS Satellite Surveying”
 Alfred Leick
 John Wiley & Sons, Inc.

➢ “Where am I? Sensors and Methods for Mobile Robot Positioning”
 J. Borenstein, H. R. Everett, L. Feng
 The University of Michigan
Nel CD-ROM allegato sono presenti le seguenti directory:

- **“INSTALL”:** la directory contiene il programma setup.exe che permette l’installazione del programma in seguito descritto.

- **“CODICE”:** la directory contiene il codice del programma in seguito descritto (il codice è scritto in Ms Visual Basic 5.0).

- **“PROVE”:** la directory contiene una serie di sottodirectory che contengono i files generati dal programma durante le prove di valutazione del ricevitore che saranno descritte nella parte finale della relazione.

- **“RELAZ”:** la directory contiene la presente relazione in formato “Word 97”. Inoltre, contiene la sottodirectory “GRAFICI” in cui sono salvati in formato “Encapsulated PostScript” tutti i grafici presenti in questa relazione, differenziati a seconda della prova alla quale si riferiscono.

- **“DOCUM”:** la directory contiene una serie di documenti ufficiali relativi al NAVSTAR GPS, utili a chi fosse interessato ad un approfondimento della struttura del sistema. I documenti sono in formato “Adobe PDF” e sono i seguenti:

 - **“ZODIAC.PDF”:** è il documento “Zodiac Serial Data Interface Specification” descritto in precedenza e fornito anche in versione stampata.
 - **“ICD200.PDF”:** è il documento “ICD-GPS-200, Revision C” descritto in precedenza e fornito anche in versione stampata.
 - **“DOC1.PDF”:** è un documento che prende in considerazione in maniera particolare le caratteristiche del sistema in termini di prestazioni ottenibili.
 - **“DOC2.PDF”:** “NAVSTAR GPS User Equipment Introduction”: è il documento ufficiale che descrive in modo generale il sistema GPS dando maggior importanza alle caratteristiche di un generico ricevitore.
PARTE I
IL SISTEMA DI POSIZIONAMENTO GLOBALE NAVSTAR

1.1 PRINCIPI DI FUNZIONAMENTO

Il principio sul quale si basa il sistema GPS è la misura di distanza fra l’utente ed un minimo di quattro satelliti situati in posizioni note. Ogni satellite emette informazioni relative alla propria posizione stimata ed all’istante di tempo in cui il segnale è stato generato sotto forma di onde radio. Dopo aver percorso la distanza fra satellite ed osservatore, ad una velocità nota in prima approssimazione, il segnale raggiunge il ricevitore. Nota la velocità, dalla differenza fra il tempo indicato nel segnale ed il tempo nel quale è avvenuta la ricezione, è possibile calcolare la distanza fra il ricevitore ed il satellite.

Note le distanze da tre satelliti, è possibile ricavare due punti, risultanti dall’intersezione fra tre sfere (luogo geometrico dei punti equidistanti da un centro rappresentante il satellite), nei quali può trovarsi il ricevitore. Uno di questi due punti si trova sulla superficie terrestre mentre il restante si trova in una posizione praticamente non possibile (spazio vuoto). Escludendo, quindi, la soluzione improbabile, è possibile risalire alla propria posizione note tre misure di distanza.

Purtroppo tale metodo implica l’esistenza di una relazione di sincronismo fra gli orologi dei satelliti e l’orologio del ricevitore. Nella pratica il ricevitore a terra confronta, con un metodo basato sulla correlazione, il segnale in ingresso proveniente dal satellite con una copia generata localmente ed esegue una misura della fase relativa fra il segnale ricevuto ed il segnale locale basandosi sulla frequenza di un clock impreciso generato a bordo del ricevitore stesso.

Mentre nel caso dei satelliti è pensabile disporre di una fonte di clock molto accurata (controllabile da una struttura di sorveglianza terrestre), non è economicamente sensato disporre di una fonte accurata a bordo di ogni ricevitore. Per questo motivo è presente una differenza fra il tempo dei satelliti ed il tempo del ricevitore. Per questa ragione le differenze di distanza calcolate basandosi su una misura di distanza temporale non rappresentano misure di distanza reali, ma sono definite pseudodistanze (Pseudoranges).

Ottenendo gli pseudoranges da quattro satelliti, invece dei tre indicati in precedenza, è possibile risolvere un sistema in cui le quattro incognite sono rappresentate dalle tre coordinate spaziali e dall’offset del clock del ricevitore rispetto al tempo dei satelliti.

Nel caso in cui l’utente fosse interessato a due sole coordinate, ad esempio nel caso in cui si stesse muovendo a livello del mare e, quindi, ad una altitudine nota, è possibile ottenere la soluzione del problema di posizionamento anche disponendo di tre soli pseudoranges.

I segnali che ogni satellite emette sono rigorosamente controllati da una rete di stazioni terrestri, che si occupano di eseguire misure sui segnali diretti ai ricevitori comuni. Utilizzando sofisticati algoritmi di predizione, le stazioni di controllo stimano le posizioni future e le variazioni del clock dei satelliti. Giornalmente le stazioni eseguono un’operazione di upload verso i satelliti per l’aggiornamento dei dati che saranno in seguito indirizzati ai ricevitori degli utenti a terra.
1.2 OBIETTIVI PRINCIPALI E PRESTAZIONI ATTESE

Il primo gruppo di studio che lavorò al progetto GPS si pose una serie di obiettivi da raggiungere e stilò un elenco di caratteristiche alle quali il sistema avrebbe dovuto adeguarsi.

In seguito sono elencate alcune delle caratteristiche peculiari del GPS ed una serie di valori in termini di prestazioni ai quali il sistema si è conformato:

- Capacità di fornire elevata accuratezza nei valori di posizione, valori di velocità e valori di tempo assoluto per gli utenti autorizzati dal Dipartimento di Difesa; capacità di fornire le misure elencate in precedenza in tempo reale indipendentemente dal tipo di piattaforma sulla quale è posizionato il ricevitore, ad esempio piattaforme volanti ad elevata dinamica (nel caso di un aereo ad alte prestazioni “elevata accuratezza” si traduce in un’accuratezza di posizione migliore di 10 m ed un’accuratezza di velocità migliore di 0.1 m/s).
- Capacità di fornire buona accuratezza per l’utenza civile (l’accuratezza per utenza civile real-time deve essere prossima a 100 m nel 95% dei casi per quanto riguarda il posizionamento in uno spazio tridimensionale).
- Funzionamento assicurato su tutta la terra, ad ogni ora del giorno e con qualsiasi condizione atmosferica.
- Resistenza ad interferenze intenzionali o meno da parte di malintenzionati, in particolare modo per il servizio dedicato all’utenza militare (tecniche “antispoofing” descritte in seguito).
- Capacità di fornire supporto ad attività di rilievo topografico a livello centimetrico utilizzando misure di fase sul portante del segnale a radiofrequenza.
- Capacità di fornire un segnale temporale assoluto con un’accuratezza di 100 ns.
- Equipaggiamento affidabile e sufficientemente economico, che escluda la necessità di disporre di una fonte di clock molto accurata e di array d’antenne direzionali.

Le caratteristiche indicate in precedenza hanno condizionato in maniera decisiva la struttura del sistema ed in particolare modo le caratteristiche dei segnali utilizzati, come sarà in seguito descritto.

1.3 APPLICAZIONI DEL GPS

In seguito è indicato un elenco delle possibili applicazioni del GPS:

- Navigazione marina.
- Navigazione terrestre.
- Navigazione aerea assistita da sistemi differenziali.
- Sistemi di sincronismo temporale per reti di calcolatori su vasta scala.
- Determinazione delle orbite di satelliti spaziali artificiali.
- Determinazione dell’assetto di piattaforme mobili (aeree, marine,...) mediante l’uso di antenne multiple unitamente a tecniche interferometriche.
- Sorveglianza geodetica di precisione ed in condizioni dinamiche.
- Misure delle caratteristiche della ionosfera.

E’ importante notare che alcune di tali applicazioni non furono neppure prese in considerazione nella bozza di progetto iniziale; in ogni caso non è difficile immaginare che in un futuro non molto lontano il sistema di navigazione satellitare tenderà ad assumere un ruolo fondamentale nella vita di ogni essere umano e porterà all’introduzione di tecniche ed applicazioni fino ad oggi non pensabili.

Già oggi si pensa, ed in alcuni casi tali realizzazioni sono già allo stadio di verifica sperimentale, alla realizzazione di una rete globale con base a terra per la distribuzione di informazioni per correzione differenziale, che sia in grado di assicurare un’accuratezza di posizione dell’ordine del metro a
qualunque utente civile e per qualunque piattaforma (imbarcazioni, automobili, aerei,...).

1.4 CONFIGURAZIONE DEL SISTEMA GPS

Il sistema NAVSTAR GPS può essere schematicamente visto come l’unione di tre segmenti:

- Segmento spaziale.
- Segmento di controllo.
- Segmento utente.

Il segmento spaziale è costituito da 24 satelliti, ognuno dei quali trasmette continuamente un segnale codificato che permette il calcolo dello pseudorange ad opera del ricevitore; oltre a tale informazione, il segnale emesso dal satellite contiene molte altre informazioni come sarà in seguito descritto.

Il segmento di controllo traccia la posizione ed i parametri operativi di ogni satellite e periodicamente esegue l’upload verso ogni satellite dei parametri relativi alla posizione futura stimata di ognuno di essi e relativi alle correzioni da apportare al segnale di clock generato dall’orologio atomico di bordo. Questo insieme di informazioni è poi continuamente trasmesso dai satelliti agli utenti all’interno dei messaggi di navigazione che saranno descritti in seguito nella sezione dedicata alla struttura del segnale GPS.

Il segmento utente è costituito dal ricevitore dell’utente che, tracciando i segnali di più satelliti contemporaneamente, è in grado di calcolare la propria posizione in uno spazio tridimensionale, oltre a ricavare un’informazione di tempo assoluto.

1.4.1 SEGMENTO SPAZIALE

Come spiegato in precedenza, l’utente del sistema GPS ha la necessità di effettuare misure su un insieme di almeno quattro satelliti al fine di stabilire la propria posizione in uno spazio tridimensionale. Il sistema GPS è progettato con l’intenzione di permettere il calcolo della propria posizione in tempo reale in ogni parte del globo ed in ogni istante della giornata. Per questo motivo le orbite dei satelliti sono state studiate in modo tale da garantire ad un utente situato sulla terra di poter effettuare misure di distanza da almeno quattro satelliti qualunque istante. Inoltre, come sarà spiegato in seguito relativamente ai parametri DOP (Dilution of Precision), è bene che i satelliti in vista siano ben spaziani in termini angolari rispetto al ricevitore (è possibile anticipare che tale richiesta è dettata da motivazioni di natura geometrica della costellazione nell’istante in cui avviene il tracciamento dei segnali).

Inoltre, le misure su ognuno dei satelliti devono poter essere effettuate contemporaneamente ed in tempo reale. Questa capacità viene indicata come “accesso multiplo” ed è resa possibile dalla caratteristica di mutua ortogonalità fra i segnali dei satelliti come sarà indicato in un approfondimento successivo.

La costellazione ordinaria, ovvero relativa ai satelliti effettivamente operativi, escludendo satelliti di riserva, è costituita da 24 satelliti situati in 6 piani orbitali. Ogni piano orbitale ospita 4 satelliti. Ogni satellite ha un periodo di 12 ore (considerando il tempo siderale) e la sua orbita ha un semiasse maggiore di 26561.75 Km. I satelliti hanno un’altitudine di 21626.61 Km sopra il raggio equatoriale della terra pari a 6378.137 Km. La scelta di questo valore è resa necessaria dalla necessità di evitare le perturbazioni dovute all’atmosfera. Altre perturbazioni, a causa della pressione solare ed agli effetti della gravità dovuti a luna e sole, possono essere significativi, ma, comunque, continuamente monitorati e corretti dal segmento di controllo.

Nell’elenco seguente sono indicati i parametri principali dell’orbita dei satelliti:

- Raggio dell’orbita = 26561.75 Km (Semiasse maggiore)
- Velocità orbitale = 3.8704 Km/s
- Eccentricità = Nominalmente nulla, ma in genere minore di 0.02
- Velocità angolare = 1.454 x 10^4 rad/s
• Periodo = 12 ore (Tempo Siderale)
• Inclinazione = 55° nominali

1.4.2 SEGMENTO DI CONTROLLO

Gli obiettivi del segmento di controllo sono i seguenti:

• Mantenere ognuno dei satelliti nella corretta posizione orbitale anche in seguito a perturbazioni dovute alla pressione solare e agli effetti gravitazionali causati da sole e luna.
• Effettuare correzioni al clock dei satelliti ed effettuare opere di manutenzione ordinaria sulla strumentazione di bordo.
• Tracciare la posizione di ogni satellite ed effettuare l'upload dei dati di navigazione che il satellite stesso trasmetterà verso i ricevitori a terra.
• Monitorare le condizioni di salute dei satelliti ed, eventualmente, attivare i satelliti di riserva.

Il segmento di controllo è costituito attualmente da cinque stazioni dislocate su tutta la terra di cui quattro con funzioni di controllo e di upload ed una costituente il centro operativo di controllo.

1.4.3 SEGMENTO UTENTE

L'utente finale utilizza un ricevitore che fornisce, nella forma più adatta all'applicazione, una serie di informazioni che solitamente sono rappresentate dalla posizione dell'antenna in uno spazio tridimensionale ed un'informazione del tempo assoluto dei satelliti; in genere il tempo assoluto GPS è convertito in un valore legato al tempo locale relativo alla posizione dell'utente.

Una descrizione del ricevitore sarà data in seguito in quanto la struttura è fortemente legata alla natura del segnale GPS.

Per ora è sufficiente dire che tutti i ricevitori sono costituiti da due sezioni:

• Una sezione dedicata al trattamento dei segnali ed al calcolo degli pseudoranges e di altre variabili che saranno in seguito descritte; in genere tale blocco è molto simile in tutti i ricevitori anche se, a seconda dell'applicazione finale per la quale il ricevitore è studiato, vi possono essere notevoli differenze in termini di prestazioni fra i diversi ricevitori.
• Una sezione fortemente legata all'applicazione, che riceve in ingresso i valori degli pseudoranges e si occupa di calcolare una soluzione utile all'utente; nel caso di ricevitori studiati per la navigazione, l'informazione è costituita dalle coordinate, in un sistema di riferimento adatto, del punto in cui si trova l'antenna; nel caso di ricevitori studiati per sincronizzare reti su vasta scala l'informazione d'interesse è ovviamente costituita dal tempo assoluto; nel caso di un ricevitore studiato per il monitoraggio dell'assetto di una piattaforma, si utilizzeranno informazioni provenienti da più antenne disposte in un array di geometria nota. Come si può ben comprendere il blocco applicativo di un ricevitore è completamente diverso al variare dell'output diretto all'utente. Un elenco delle possibili applicazioni può comunque essere solo parziale data la rapidità con la quale appaiono nuovi spazi applicativi per il GPS.

1.5 SEGNALI UTILIZZATI NEL SISTEMA GPS

I segnali GPS sono emessi dai satelliti su due portanti: un segnale primario a 1575.42 MHz (segnale L1) e un segnale secondario a 1227.6 MHz (segnale L2).
Questi segnali sono generati in maniera sierona fra loro in modo tale che un utente in grado di ricevere entrambi i segnali possa correggere il ritardo di gruppo dovuto all'effetto della ionosfera e applicare le correzioni appropriate come indicato in seguito.
Le portanti sono modulate da un segnale che trasporta diversi tipi di informazione.
Potenzialmente entrambi i segnali alle frequenze L1 e L2 possono avere ognuno due tipi di modulazione contemporaneamente, sfruttando l'ortogonalità fra le componenti in fase ed in quadratura. Allo stato attuale esistono due modulazioni sulla frequenza L1, ed una sola modulazione su L2. Le due modulazioni sono le seguenti:

- **C/A-Code (Clear Acquisition Code):** questo è il codice PRN (Pseudo Random Noise) breve, trasmesso con una velocità di 1.023 Mbps. Questo è il segnale principale di distanza per impiego civile ed è sempre trasmesso in chiaro, ovvero senza aver subito un processo crittografico. Tale codice è pure utilizzato per sincronizzarsi al ben più lungo P-Code. L'uso del C/A-Code si traduce in quello che viene definito Servizio di Posizionamento Standard (Standard Positioning Service SPS); il C/A-Code è sempre disponibile anche se può essere in qualche modo degradato di proposito dall'autorità che gestisce il sistema. Per ora il C/A Code è disponibile solo sulla frequenza L1.

Come si può comprendere, l'unico segnale accessibile ad utenti civili è il C/A-Code e, quindi, il Servizio di Posizionamento Standard.

Oltre a quanto indicato in precedenza, l'autorità di gestione ha la possibilità di degradare intenzionalmente l'accuratezza del C/A-Code desinchronizzando i clocks dei satelliti o introducendo piccoli errori nelle effemeridi trasmesse. Questo tipo di degradazione prende il nome di Selective Availability (SA) e sarà in seguito descritto con maggior dettaglio.

La posizione attuale del DOD è di limitare l'errore di posizionamento dovuto alla SA al valore di 100 m (in riferimento al 97% dei casi). La tecnica differenziale in seguito descritta permette di superare le limitazioni imposte dalla SA.

Una caratteristica addizionale dei segnali di distanza è una modulazione a 50 bps utilizzata come link di comunicazione; attraverso questo segnale, ogni satellite trasmette la propria posizione e le correzioni necessarie da applicare al valore emesso dal proprio orologio atomico; infatti, l'orologio atomico a bordo di ogni satellite oscilla ad una frequenza estremamente stabile, ma comunque non controllata. I valori di correzione sono, quindi, necessari per allineare il clock di ogni singolo satellite al tempo GPS globale.

Oltre a questi parametri sono comunicati i dati relativi allo stato di salute dei satelliti, alla geometria dell'intera costellazione e le informazioni necessarie per aggiungere il P-Code dopo aver acquisito il C/A-Code.
1.6 PRESTAZIONI OTTENIBILI IN TERMINI DI ACCURATEZZA DEI VALORI DI POSIZIONE

L'accuratezza dell'informazione di posizione è la caratteristica principale di interesse per l'utente. Anche se questa è legata all'accuratezza degli pseudorange, questo non è l'unico parametro che la influenza. Le performances del GPS sono in prima approssimazione influenzate da due parametri:

- Errori dovuti alla geometria dei satelliti; la geometria dei satelliti causa, infatti, una variazione del miglior valore di accuratezza ottenibile al variare dell'angolo relativo fra i satelliti valutato dal punto di vista del ricevitore. Il parametro che determina il grado di inaccuratezza introdotto dall'effetto geometrico prende il nome di “Geometric Dilution”.
- Errori di distanza dovuti alle caratteristiche intrinseche dei segnali.

Sotto l'ipotesi di incorrelazione fra gli errori dovuti alla geometria e gli errori intrinseci, l'errore di posizione può essere espresso come segue:

$$(\text{Errore di posizione RMS}) = (\text{Geometric Dilution}) \times (\text{Errore di distanza RMS})$$

La relazione fra l'accuratezza degli pseudorange e l'accuratezza finale di posizionamento è funzione della geometria del set di satelliti utilizzato per il calcolo. La Geometric Dilution può essere calcolata per ogni configurazione istantanea dei satelliti come vista da una particolare posizione dell'utente. Per raggiungere un'accuratezza di posizionamento di 10 m, l'accuratezza degli pseudorange e la geometria devono entrambi combinarsi con valori accettabili.

Sono normalmente utilizzati i seguenti coefficienti per tener conto della degradazione dell'accuratezza a causa della geometria:

- PDOP (Position Dilution of Precision): tiene conto dell'errore in ogni direzione (La costellazione attuale di satelliti assicura un valor medio per il PDOP pari a 2.7 (il valor medio si intende calcolato facendo riferimento a tutta la terra ed al 50 % dei casi); il range tipico per il PDOP è l'intervallo 1.5 - 8.
- HDOP (Horizontal Dilution of Precision): tiene conto dell'errore introdotto in direzione orizzontale.
- VDOP (Vertical Dilution of Precision): tiene conto dell'errore introdotto nella misura di altitudine.

Le variazioni nel fattore DOP sono tipicamente molto più grandi rispetto alle variazioni dell'errore di distanza.

Per quanto riguarda gli errori intrinseci del sistema, possono essere raggruppati secondo le seguenti cause principali:

- Errori nelle effemeridi dei satelliti.
- Errori nel clock dei satelliti.
- Ritardo di gruppo dovuto alla ionosfera.
- Ritardo di gruppo dovuto alla troposfera.
- Errori dovuti al fenomeno del multipath causato dalla presenza di superfici riflettenti in prossimità del ricevitore.
- Errori di misura del ricevitore.

Alcuni di questi errori tendono ad essere correlati per lo stesso satellite. Per esempio gli errori di clock e delle effemeridi tendono ad essere negativamente correlati, cioè tendono a cancellarsi a vicenda. Altri errori tendono ad essere correlati fra satelliti diversi; per esempio i ritardi dovuti sia alla ionosfera sia
alla troposfera hanno sempre lo stesso segno in quanto sono il risultato della penetrazione nello stesso mezzo con differenti angoli della radiazione elettromagnetica associata al segnale.

Nel caso di assenza del degradamento dovuto alla Selective Availability, tutti gli errori per il Servizio di Posizionamento Standard (SPS) ad una sola frequenza sono quasi identici a quelli per il servizio PPS a singola frequenza, ad esclusione degli errori di misura del ricevitore (che decrescono all’aumentare della frequenza del codice).

L’uso della doppia frequenza, che è disponibile solo per il PPS, può ridurre l’errore ionosferico a circa 1 m.

1.7 PERTURBAZIONI DEL SEGNALE GPS: EFFETTI ATMOSFERICI E PROBLEMI LEGATI AL MULTIPATH

Le frequenze dei segnali GPS (L1 = 1575.42 MHz e L2 = 1227.6 MHz) sono sufficientemente elevate da garantire un ritardo di gruppo abbastanza piccolo, ma sono sufficientemente basse da evitare una perdita di potenza troppo elevata a causa dei cammini multipli (Multipath), permettendo, quindi, di utilizzare piccole antenne omnidirezionali, evitando l’uso di antenne che necessitano di puntamento. Frequenze più elevate rispetto a quelle scelte avrebbero subito una significativa attenuazione in caso di pioggia.

Il range di frequenze adottato comporta, quindi, la necessità di prendere in considerazione i piccoli ma non trascurabili effetti dovuti all’atmosfera. Quando il segnale attraversa l’atmosfera dal satellite verso all’utente, incontra una quantità di effetti di propagazione la cui grandezza dipende dall’angolo di elevazione del cammino del segnale e dall’ambiente atmosferico nel quale l’utente è immerso. Tra i vari effetti sono inclusi i seguenti:

- Ritardo di gruppo ionosferico e scintillazione.
- Ritardo di gruppo dovuto alla troposfera e alla stratosfera.
- Attenuazione nella troposfera e nella stratosfera.

Gli elettroni liberi nella ionosfera creano un ritardo di gruppo nel segnale modulante (C/A-Code, P-Code). Questo ritardo è proporzionale al numero di elettroni incontrati lungo il percorso di trasmissione e inversamente proporzionale al quadrato della frequenza di trasmissione.

Esistono due tecniche per la correzione di questo errore.

La prima consiste nell’utilizzo di un modello della ionosfera; gli otto parametri del modello utilizzato per la correzione sono trasmessi come parte dei messaggi di navigazione a 50 bit/s. Questo modello permette un’accuratezza di pochi metri nell’errore verticale.

La seconda tecnica consiste nell’utilizzare entrambe le frequenze trasmessi L1 e L2 e la legge che lega il ritardo di gruppo al quadrato della frequenza in modo tale da calcolare direttamente il ritardo stesso. Questa tecnica è ovviamente disponibile solo per gli utenti in grado di utilizzare il P-Code in quanto l’unica modulazione presente su entrambe le frequenze L1 e L2 è il P-Code (si ricordi che il C/A-Code è trasmesso solo sulla frequenza L1).
1.8 TECNICHE AVANZATE PER LA CORREZIONE DEGLI ERRORI

1.8.1 GPS DIFFERENZIALE (DGPS)

Se due ricevitori GPS operano in un’area di dimensioni ragionevolmente contenute, la maggior parte degli errori che condizionano la misura di posizione sono comuni nelle due posizioni. Per esempio gli errori di clock, delle effemeridi, gli errori dovuti alla ionosfera ed altri errori tendono a cancellarsi quando si osserva la differenza fra le posizioni fornite da due ricevitori. Per questo motivo se un ricevitore è posto in posizione fissa e nota, può trasmettere le informazioni per attuare la correzione degli pseudoranges ad altri ricevitori in posizioni non note.

Per il futuro si pensa alla possibilità di costruire una rete per la diffusione dell’informazione di correzione differenziale mediante un link radio nelle zone abitate e critiche per la navigazione come aeroporti e porti marini.

In genere le stazioni di riferimento DGPS già attive trasmettono le informazioni di correzione degli pseudoranges (ad una velocità di circa 250 bps) per ogni satellite in vista su una portante radio separata. Poiché possono esistere più stazioni di riferimento, i dati includono pure la posizione di altre stazioni di riferimento DGPS in modo tale da permettere all’utente di utilizzare la stazione più vicina.

Il GPS differenziale è normalmente limitato ad una distanza fra stazione e utente di circa 100 Km oltre la quale cadono le ipotesi sulla quali il metodo è fondato.

1.8.2 INSEGUIMENTO DELLA FASE DELLA PORTANTE (CARRIER TRACKING)

Una caratteristica speciale del GPS è la possibilità di creare un segnale di distanza estremamente preciso riproducendo e tracciando nel tempo la portante a radiofrequenza (1575.42 MHz). Questo segnale ha una lunghezza d’onda di 19 cm ed i ricevitori moderni sono in grado di analizzare la differenza di fase fra la portante stessa ed una replica sintetizzata localmente con una precisione di 1/100 della lunghezza d’onda; il metodo fornisce, quindi, una precisione dell’ordine del millimetro.

Sfortunatamente si ottiene una precisione estremamente elevata, ma non è possibile dire nulla riguardo all’accuratezza ottenibile.

Per ottenere un miglioramento nel valore di accuratezza è necessario determinare quale ciclo della portante sia tracciato in ogni istante, relativamente all’inizio della modulazione. L’unica possibilità è effettuare una comparazione con un ulteriore ricevitore che stia tracciando la portante da una posizione nota. Ovviamente, in caso di perdita temporanea del segnale, non è possibile recuperare l’informazione di distanza dalla stazione di riferimento.

In genere la tecnica del Carrier Tracking è utilizzata in due modi diversi:

- Nell’uso comune l’informazione di fase del carrier è utilizzata per filtrare alcuni errori sempre presenti con il metodo classico di tracciamento del codice, in modo tale da ridurre il contenuto rumoroso della misura di distanza.
- Negli usi più avanzati, ad esempio nel caso del rilievo topografico e del controllo automatico dell’assetto di velivoli, si utilizzano le tecniche differenziali accennate in precedenza.
1.9 STRUTTURA E CARATTERISTICHE PARTICOLARI DEL SEGNALE GPS

Le caratteristiche dei segnali utilizzati nel sistema GPS sono fortemente legate alle specifiche richieste dall’ente committente relative all’accuratezza di posizione sia per il Sistema di Posizionamento Preciso dedicato alle forze armate, sia per il Sistema di Posizionamento Standard dedicato all’utenza civile. L’accuratezza delle misure degli pseudoranges può essere legata all’accuratezza di posizionamento desiderata per mezzo dei coefficienti già introdotti in precedenza PDOP, HDOP e VDOP. Come indicato in precedenza il sistema GPS è stato originariamente pensato con l’intento di permettere un’accuratezza di posizionamento di 10 m per gli utenti autorizzati che, considerando un valore di PDOP pari a 3 (condizione vera nella maggioranza dei casi), si traduce in un’accuratezza necessaria per la misura dello pseudorange almeno pari a 10/3 = 3.33 m equivalenti a 11 ns. Nel GPS tale precisione è raggiunta mediante il P-Code a 10.23 MHz.

Due altri obiettivi, rapida acquisizione del P-Code e volontà di fornire un sistema di posizionamento anche per utenze civili con un’accuratezza prossima a 100 m, sono raggiunti mediante l’adozione del C/A-Code civile che ha un bit rate di 1.023 Mbps ed un periodo del codice di 1023 bit ovvero di 1 ms. Gli utenti civili non hanno accesso al P-Code quando questo è trasformato nell’Y-Code criptato per ragioni di “antispoofing”.

In aggiunta alle richieste relative all’accuratezza, il segnale GPS deve possedere le seguenti proprietà:

- Tolleranza all’interferenza dovuta ai segnali provenienti da altri satelliti GPS nella stessa banda di frequenze (Capacità di Accesso Multiplo).
- Tolleranza all’interferenza dovuta al fenomeno del multipath.
- Tolleranza ad eventuali copie errate del segnale GPS generate da forze nemiche al fine di trarre in inganno l’apparato di ricezione (“Antispoofing”).
- Abilità di fornire una misura del ritardo di gruppo dovuto alla ionosfera mediante misure con doppià frequenza.

La scelta della tipologia di segnale è caduta sui segnali a spettro disperso per le caratteristiche che in seguito saranno spiegate.

La comunicazione di un segnale a spettro disperso è costituita dalle seguenti fasi:

- Generazione del segnale utile che trasporta l’informazione necessaria (Nel GPS si tratta di un segnale binario che permette il calcolo dello pseudorange e la comunicazione dei dati di navigazione).
- Modulazione mediante una portante sinusoidale (Il segnale è traslato in frequenza, ma è comunque un segnale a banda stretta).
- Allargamento (dispersione) di banda mediante moltiplicazione con un segnale a banda molto maggiore rispetto a quella del segnale originale (Il segnale a banda larga è un rumore pseudocasuale).

Come indicato precedentemente, una caratteristica fondamentale del sistema GPS è la necessità di recuperare l’informazione relativa ad uno specifico satellite evitando problemi di interferenza con i segnali trasmessi da tutti i restanti satelliti sulla stessa frequenza portante. La tecnica a spettro disperso raggiunge questo obiettivo con una tecnica detta “Accesso Multiplo a Divisione di Codice” (Code Division Multiple Access CDMA) nella quale più segnali possono essere trasmessi esattamente sullo stesso canale in frequenza con una limitata interferenza fra gli stessi, ammesso che il numero totale di segnali non sia molto elevato. Nel caso GPS, a causa della struttura delle orbite dei satelliti, il numero massimo di satelliti in vista e quindi di canali necessari è 12. Assumendo che vi siano M segnali, ognuno con esattamente la stessa potenza P, se tutti i segnali fossero ricevuti con esattamente lo stesso ritardo di codice, sarebbe possibile scegliere una famiglia di segnali mutuamente ortogonali in modo da permettere l’accesso multiplo, a condizione che M \leq F_c T_d dove T_d è il periodo di clock dell’informazione traspportata da ogni singolo segnale e F_c è la frequenza della portante.

13
D'altra parte la condizione sul ritardo di codice uguale per tutti i segnali non è soddisfatta nel caso del GPS a causa della diversa distanza fra ogni satellite ed il ricevitore. Buone performance di accesso multiplo sono, comunque, raggiungibili scegliendo i diversi codici pseudocasuali utilizzati per disperdere lo spettro in maniera tale che siano quasi completamente scorrelati fra di loro per ogni possibile valore di offset temporale.

Naturalmente, la scelta di un metodo TDM (Time Division Multiplexing), spesso utilizzato nelle telecomunicazioni, non avrebbe permesso il tracciamento continuo dei satelliti, compromettendo la funzionalità del sistema in condizioni dinamiche.

Tecniche con canali trasmessi su portanti diverse avrebbero invece comportato un costo troppo elevato dal punto di vista del ricevitore.

Un’ulteriore problematica affrontata è stata la necessità di multiplexare due codici, il C/A-Code ed il P-Code, su una singola portante. Il segnale L1 ha due segnali a spettro disperso, il C/A-Code civile ed il codice di precisione criptato P-Code, sulla singola portante a radio frequenza. Il sistema GPS multiplexa i codici civile e di precisione su una singola portante utilizzando la modulazione delle componenti in fase e in quadratura tra loro ortogonali.

In origine era stata considerata l’ipotesi di utilizzare il multiplexing nel tempo, ovvero far seguire ad una porzione del P-Code una porzione del C/A-Code, ma in tal modo non sarebbe stato possibile per l’utenza civile misurare con continuità la fase della portante data l’im possibilità di accedere al codice criptato.

Il segnale L2 è attualmente modulato solo dal P-Code.

Per quanto riguarda la trasmissione dei dati di navigazione, si ricorda che sono trasmessi ad una velocità di 50 bps nello stesso modo sulle due frequenze L1 e L2. I segnali di modulazione della portante sono formati dal P-Code (o dal C/A-Code) a cui è sommata modulo-2 la sequenza dei dati di navigazione a 50 bps.

La scelta di fornire i segnali su due frequenze, L1 e L2, è dettata dalla volontà di offrire un metodo per la correzione del ritardo di gruppo ionosferico. La differenza tra le due portanti è di 347.82 MHz, corrispondente al 28.3 % della frequenza minore, ed è sufficiente allo scopo dato che il ritardo di gruppo ionosferico varia approssimativamente come l' inverso del quadrato della frequenza del segnale.

Per quanto riguarda i problemi legati agli effetti relativistici, questi non sono trascurabili, ma sono parzialmente compensati nei satelliti shiftando la frequenza di 10.23 MHz del clock a bordo del satellite di un lieve valore verso il basso prima del lancio. Quando il segnale si avvicina alla terra dal satellite, la sua frequenza aumenta leggermente per l’effetto relativistico e raggiunge il valore di 10.23 MHz atteso dal ricevitore.

1.10 SELECTIVE AVAILABILITY (SA)

La Selective Availability (SA) è il degradamento intenzionale del segnale GPS con l’obiettivo di diminuire la piena accuratezza garantita dal sistema all’utenza militare non autorizzata. La SA è parte del Servizio di Posizionamento Standard che è stato formalmente attivato a partire dal 25 Marzo 1990. Anche se in alcuni periodi la SA è stata disabilitata, la stessa è oggi regolarmente implementata e l’autorità di gestione del sistema GPS garantisce le seguenti caratteristiche per il Sistema di Posizionamento Standard:

- Accuratezza di posizionamento orizzontale di almeno 100 m (nel 95 % dei casi) e di almeno 300 m (nel 99.99 % dei casi).
- Accuratezza di posizionamento verticale di almeno 140 m (nel 95 % dei casi).
- Accuratezza temporale di almeno 340 ns (nel 95 % dei casi).

Chiaramente tali caratteristiche si riferiscono alle condizioni operative con SA attiva, in quanto le performance del GPS senza SA dovrebbero garantire un valore di 20 m per l'accuratezza di
La SA non era stata presa in considerazione nel progetto iniziale del GPS, ma, in seguito alle verifiche sperimentali, si notò che il sistema permetteva un'accuratezza prossima ai 20-30 m, risultato superiore rispetto alle aspettative del DOD americano; per questo motivo fu introdotta la SA al fine di riportare le caratteristiche del sistema ai valori inizialmente stabiliti per il Sistema di Posizionamento Standard.

1.10.1 IMPLEMENTAZIONE DELLA SELECTIVE AVAILABILITY

Le posizioni dei satelliti e l'offset del clock degli stessi sono ricavati dai dati di navigazione a 50 bps. Vi sono, quindi, diversi modi per degradare la piena accuratezza del sistema GPS:

- Manipolazione dei dati relativi all’orbita.
- Manipolazione della frequenza del clock dei satelliti.

La manipolazione dei dati relativi all’orbita degrada l’accuratezza della posizione calcolata del satellite e si traduce in un errore di posizione del ricevitore con una lenta variabilità (periodo dell’ordine di alcune ore).

La manipolazione del clock dei satelliti risulta invece in un errore con variazione molto più rapida sul valore degli pseudoranges (periodo dell’ordine dei minuti).

A causa della reale manipolazione del clock dei satelliti, l’errore influenza sia il C/A-Code, sia il P-Code, sia misure effettuate sfruttando tecniche doppler.

Oltre alle informazioni precedentemente elencate non è fornito alcun altro dato relativo ad esempio alla densità spettrale di potenza dell’errore e per tale ragione ogni misura sulle caratteristiche dell’errore deriva solo ed esclusivamente da rilevazioni sperimentali ad opera degli utenti. Nessuna informazione è fornita sulla dinamica dell’errore e l’unico modo per ottenere informazioni sulla stessa è basarsi sui dati sperimentali.

In generale, la SA attiva, la posizione del ricevitore risulta variare all’interno di un cerchio di raggio 100 m.

Stesso discorso vale per la dimensione verticale.

In ogni caso valgono le seguenti affermazioni riguardo alla SA:

- La SA è generata in ogni satellite e pare essere scorrelata fra i vari satelliti; questo indica che gli effetti sull’accuratezza di posizione del ricevitore sono dipendenti dalla geometria dei satelliti.
- Le caratteristiche garantite dall’autorità di gestione assumono che almeno ventuno satelliti siano operativi il che significa che il malfunzionamento di ulteriori satelliti può produrre un errore superiore rispetto a quanto garantito.
- Nessuna informazione è fornita sugli errori di velocità e di accelerazione.
- Nessuna informazione è fornita relativamente alla densità spettrale di potenza della SA, cosa che rende difficile la simulazione della stessa in fase di progetto e test di nuovi ricevitori.

15
1.11 DESCRIZIONE DI UN RICEVITORE GENERICO

Un ricevitore è in genere costituito dai seguenti blocchi funzionali:

- Antenna
- Preamplificatore
- Oscillatore di riferimento
- Sintetizzatore di frequenza
- Downconverter
- Sezione a frequenza intermedia
- Elaboratore del segnale digitale
- Processore d'applicazione

In genere non tutti i ricevitori forniscono una soluzione al problema della navigazione. Alcuni ricevitori ad esempio rispondono ad esigenze di sincronizzazione su reti a larga scala, altri sono utilizzati per applicazioni geodetiche differenziali ad alta precisione. Per questo motivo l'ultimo blocco di un ricevitore non è ben specificato.

Il primo stadio è costituito dall'interfaccia con l'antenna. In genere i ricevitori comuni utilizzano una sola antenna anche se esistono applicazioni particolari, ad esempio sistemi per la determinazione dell'assetto di velivoli, in cui è richiesta la presenza di un numero superiore di antenne dislocate secondo una geometria nota. In altri casi l'impiego di più antenne è necessario per incrementare il rapporto segnale-rumore.

Nei casi più comuni si utilizza una sola antenna omnidirezionale (in realtà si usa un'antenna emisferica). L'antenna può essere attiva o passiva a seconda delle performances richieste.

La funzione dell'antenna e della relativa elettronica di condizionamento è di ricevere il segnale valido e rigettare i segnali spuri dovuti al fenomeno del multipath e, quindi, i segnali di interferenza.

Il primo blocco di un ricevitore è, quindi, costituito da un amplificatore d'antenna a basso rumore.

Il segnale dell'antenna è trattato dalla combinazione di un filtro e di un amplificatore a radio frequenza allo scopo di filtrare componenti di interferenza presenti a frequenze adiacenti al segnale GPS.

L'oscillatore di riferimento fornisce i riferimenti di tempo e frequenza per il ricevitore. Poiché le misure di un ricevitore GPS sono basate sul tempo di arrivo di un codice modulato da un rumore pseudocasuale e su una misura della fase della portante, l'oscillatore di riferimento è un blocco chiave del ricevitore.

L'uscita dell'oscillatore di riferimento è utilizzata dal sintetizzatore di frequenza che genera i segnali di clock di sistema e i segnali per il downconverter.

Il downconverter è un mixer che opera la traslazione del segnale nel dominio delle frequenze dal valore originale ad un valore di frequenza intermedio meglio trattabile dalle sezioni successive.

Lo scopo della sezione IF (Frequenza Intermedia) è di fornire un ulteriore filtraggio del rumore fuori banda ed aumentare l'ampiezza del segnale per le sezioni successive.

La sezione IF può anche contenere un circuito di controllo automatico del guadagno in grado di massimizzare la dinamica del segnale ed eliminare interferenze impulsive nel segnale.

Dopo l'elaborazione analogica il segnale entra in uno stadio di campionamento e quantizzazione operante nella banda intermedia. In alcuni casi l'operazione di numerizzazione del segnale è eseguita in banda base. In ogni caso, comunque, sono ricavati i campioni delle componenti in fase ed in quadratura del segnale.

In genere la struttura descritta, ovvero costituita dagli stadi di amplificazione, shift in frequenza, amplificazione alla frequenza intermedia e numerizzazione, è realizzata su un singolo chip monolitico per microonde.

La sezione di processing digitale del ricevitore è il cuore del ricevitore stesso ed espleta le seguenti funzioni:

- Separazione del segnale in più canali di elaborazione per il tracciamento simultaneo di più
I campioni in fase e in quadratura ottenuti dal processo di numerizzazione sono passati ad un insieme di DLL (Delay Lock Loop) posti in parallelo, che si occupano di tracciare i segnali provenienti da ognuno dei satelliti in vista. La misura si basa sull’unicità del codice trasmesso da ogni satellite in modo tale da permetterlo riconoscimento ed il tracciamento continuo di ognuno di essi.

La tecnica utilizzata dal DLL consiste nel creare una replica interna del codice di modulazione di ogni satellite e nell’eseguire una crosscorrelazione con il segnale ricevuto al fine di ricavare il tempo di inizio della sequenza. Il tempo del satellite all’istante della trasmissione è, quindi, sottratto al tempo del ricevitore in modo da recuperare i pseudoranger. Se il clock del ricevitore fosse sincronizzato al clock del satellite, la distanza fra i due sarebbe pari a \(D = c(T_{\text{rc} \ Associated\ Code\ o\ P\-Code}) \) dei satelliti.

Come indicato in precedenza, non è economicamente possibile dotare i ricevitori di fonti di clock tali da garantire il sincronismo con il tempo dei satelliti GPS. Per questo motivo è necessario aggiungere una relazione che permetta di risolvere l’incertezza temporale.

Il numero di DLL costituisce quello che comunemente è indicato come “Numero di Canali” di un ricevitore. Maggiore è il numero di satelliti, maggiore il numero di satelliti che possono essere contemporaneamente tracciati. E’ compito dell’unità di elaborazione successiva utilizzare le misure ottenute dai satelliti posti in posizione più vantaggiosa (al fine di minimizzare il PDOP) e con rapporto segnale rumore più elevato. Inoltre, è importante considerare il fatto che disporre di un maggior numero di satelliti permette di raggiungere più rapidamente la soluzione del problema di posizionamento allo start-up del ricevitore (il tempo necessario per raggiungere la soluzione dopo lo start-up è comunemente indicato come “Time to First Fix”) o in caso di perdita temporanea del segnale a causa di ostruzioni fra il ricevitore ed i satelliti.

Ogni DLL fornisce una stima dello pseudorange, della fase della portante e fornisce i dati di navigazione relativi al satellite tracciato.

L’uscita della sezione di elaborazione digitale è rappresentata dagli pseudoranges, dalla velocità di variazione degli pseudoranges, dal rapporto segnale rumore e dai dati di navigazione provenienti da ognuno dei satelliti tracciati.

Molti ricevitori permettono pure di ricostruire la portante del segnale GPS alla frequenza di 1575.42 MHz e di utilizzare questa sinusoide come segnale di distanza temporale.

Questo tipo di misura è estremamente preciso (tipicamente dell’ordine del centimetro) ma la sua accuratezza è limitata dalla difficoltà di riconoscerne quale sia stato ricevuto. Nel caso in cui fosse possibile dare una misura con una precisione di 1/100 della lunghezza d’onda della portante (19 cm) il rumore massimo contenuto nell’informazione di fase assicurerebbe una precisione di misura della distanza di 2 mm. D’altra parte il valore iniziale della fase della portante è assolutamente ambiguo ed è possibile ovviare a questo inconveniente solo con tecniche differenziali.

I parametri forniti da ogni DLL sono passati al processore di navigazione che si occupa di calcolare la posizione di ogni satellite a partire dai dati di navigazione e di risolvere il sistema le cui incognite sono rappresentate dalle coordinate di posizione del ricevitore. Naturalmente il processore si occupa pure di correggere i valori di pseudorange e fase della portante tenendo conto delle molteplici cause di perturbazione come errori nel clock dei satelliti, rotazione della terra, ritardo ionosferico e troposferico, effetti relativistici e ritardi dovuti all’elettronica di trattamento del segnale.

Dopo le correzioni precedentemente indicate, i dati sono processati da un filtro di Kalman che stima la posizione del ricevitore ed il vettore di velocità.

In genere le coordinate sono calcolate in relazione ad un sistema vantaggioso dal punto di vista del calcolo ed in seguito trasformate nel sistema di coordinate scelto dall’utente.
E’ importante ricordare che in alcuni ricevitori il filtro di Kalman può ricevere in ingresso informazioni provenienti da altri sensori come altimetri barometrici, stimatori di assetto, bussole, misuratori di velocità, piattaforme inerziali o altri aiuti alla navigazione. In altri casi il filtro di Kalman può essere assistito da informazioni provenienti da una base di riferimento per GPS differenziale posta in una posizione nota.
La struttura di questa sezione è fortemente legata alla natura dell’informazione di interesse per l’utente. Tra le varie applicazioni vi sono le seguenti:

- Navigazione marina e terrestre.
- Trasferimento di tempo e frequenza.
- Sorveglianza geodetica statica e dinamica.
- Monitoraggio del contenuto totale di elettroni e del grado di scintillazione della ionosfera.
- Stazioni di riferimento per GPS differenziale.
- Monitoraggio dell’integrità del segnale dei satelliti GPS.

Tali applicazioni estremamente diverse necessitano di informazioni e prestazioni molto diverse. Il legame comune fra queste applicazioni è l’uso delle stesse informazioni fornite dalla sezione di elaborazione digitale del ricevitore stesso.
D’altra parte, poiché le prestazioni richieste da applicazioni diverse possono differire notevolmente, l’applicazione finale condiziona completamente la parte restante del ricevitore in termini di performances.
PARTE II
PROGETTO SPERIMENTALE

L’idea fondamentale del progetto è la valutazione di un sistema di navigazione per robot mobili autonomi basato sul sistema GPS.

Tenendo presente quanto indicato in precedenza risulta chiaro come l’unica modalità di funzionamento del GPS per l’utenza civile sia rappresentata dal Sistema di Posizionamento Standard basato sul C/A-Code trasmesso sulla frequenza L1.

Come già sottolineato, oltre agli errori intrinseci presenti nel segnale GPS, una importante causa di degradamento delle prestazioni è rappresentata dalla Selective Availability (SA). Per questo motivo l’idea iniziale è stata di valutare la possibilità di realizzare un sistema GPS differenziale a livello locale.

Inizialmente si è supposto di disporre di due ricevitori identici e di calcolare banalmente la differenza tra i valori di posizione generati dagli stessi. In linea teorica, supponendo che i due ricevitori utilizzino gli stessi satelliti per il calcolo delle coordinate, la tecnica differenziale permetterebbe l’eliminazione degli errori di modo comune e, quindi, degli effetti dovuti alla SA. Sostanzialmente uno dei ricevitori ha la funzione di stazione di riferimento fissa posta in una posizione nota, mentre il secondo ricevitore è libero di muoversi in uno spazio non noto e la sua posizione è calcolata rispetto alla stazione di riferimento.

Purtroppo, come sarà indicato nelle sezione relativa alle prove sperimentali, il metodo non ha potuto essere testato a causa di un comportamento particolare del ricevitore adottato che sarà descritto in seguito. In ogni caso è stato costruito un programma che permette l’interpretazione delle informazioni provenienti da due ricevitori, calcola la differenza delle coordinate di posizione e genera una serie di files contenenti tutti i dati generati dai ricevitori al variare del tempo.

Per non essendo stato possibile testare il metodo differenziale inizialmente proposto, sono state condotte una serie di prove sperimentali sul ricevitore utilizzato al fine di valutarne comportamento e prestazioni.

E’ importante sottolineare che il progetto ha ottenuto un esito negativo principalmente a causa della struttura estremamente chiusa del ricevitore e della totale mancanza di informazioni tecniche sullo stesso.

2.1 CARATTERISTICHE GENERALI DEL RICEVITORE UTILIZZATO

Il ricevitore utilizzato è il modello “TRIPMATE” prodotto da “DELORME” (www.delorme.com).

Il ricevitore è purtroppo sprovvisto di qualunque manuale tecnico in quanto pensato per essere utilizzato solo ed esclusivamente con il software fornito dalla casa produttrice.

Il ricevitore è un sistema a 12 canali utilizzante il C/A-Code sulla frequenza L1, provvisto di antenna integrata ed alimentazione a pile (la casa produttrice fornisce pure un kit per alimentazione esterna).

Il ricevitore non è dotato di alcun controllo esterno; è presente solo un connettore RS-232 per la comunicazione con un calcolatore. L’accensione dell’apparecchio avviene attivando il segnale DTR sulla porta seriale.

Il protocollo di comunicazione segue lo standard NMEA-0183 tranne per una particolare eccezione nella sequenza di inizializzazione. (Per questo motivo il ricevitore non può essere direttamente connesso a sistemi che accettano in ingresso segnali in standard NMEA-0183).

In seguito saranno descritti in modo particolareggiato i messaggi NMEA-0183 emessi dal “TRIPMATE”.

Per quanto riguarda la struttura hardware, il ricevitore utilizza il chipset “ZODIAC” di “ROCKWELL INTERNATIONAL” (www.rockwell.com).

Purtroppo non è presente alcuna forma di memorizzazione della posizione a ricevitore spento per cui
ad ogni accensione il ricevitore necessita di un certo tempo (in media 2 minuti) per la ricerca dei satelliti visibili e per l’acquisizione del C/A-Code di ogni satellite. In molti ricevitori l’informazione della posizione è memorizzata in una memoria non volatile in modo tale che, quando il ricevitore sia rimesso in funzione, possa raggiungere rapidamente la soluzione del problema di posizionamento, essendo già note in maniera approssimata sia la propria posizione, sia le posizioni dei satelliti in vista, sia il tempo assoluto.

In appendice è allegato un documento relativo al chipset “ZODIAC” di “ROCKWELL”:

- “Zodiac Serial Data Interface Specification”:
 Il documento fornisce una descrizione dettagliata dell’interfaccia verso l’esterno del chipset “ZODIAC”. Sono indicati tutti i messaggi che il chipset può generare e ricevere. Il documento analizza il protocollo compatibile NMEA-0183 ed il protocollo binario proprietario “ROCKWELL”.
 E’ importante sottolineare che il “DELORME TRIPMATE™”, pur utilizzando il chipset “ZODIAC”, non permette la manipolazione di tutti i parametri di funzionamento; per questo motivo è ad esempio impossibile lavorare con il protocollo binario proprietario e pure alcuni messaggi del protocollo NMEA-0183 citati nel documento non sono disponibili. In ogni caso il documento è estremamente utile per la piena comprensione dei messaggi generati dal ricevitore.

2.2 PROTOCOLLO DI COMUNICAZIONE NMEA-0183

Il protocollo NMEA-0183 è uno standard appoggiato dalla “National Marine Electronics Associations” che permette la comunicazione fra apparecchi per navigazione marittima. Molti strumenti GPS utilizzano questo standard in quanto particolarmente adatto alla trasmissione di informazioni di posizione geografica anche al di fuori dal campo applicativo delle imbarcazioni. Dal punto di vista elettrico, nel caso del “DELORME TRIPMATE™” il protocollo è trasmesso su una linea seriale in standard RS-232 ad una velocità di 4800 bps, 8 bit di dati, nessuna parità, 1 bit di stop. Nessun tipo di handshake hardware è utilizzato. In alcuni ricevitori l’uscita può essere a livello TTL.

Il protocollo permette la comunicazione da un ricevitore ad un dispositivo di visualizzazione o data logger dei dati di posizione, di velocità, di tempo e di altre informazioni meno dirette; nel caso di un ricevitore GPS sono ad esempio comunicate informazioni relative ai satelliti. Il protocollo permette pure la comunicazione di dati di configurazione da un sistema di controllo ad un ricevitore. Lo standard NMEA-0183 permette ad ogni casa costruttrice di implementare messaggi proprietari che permettono di controllare caratteristiche particolari degli apparecchi.

Nello standard NMEA-0183 tutti i caratteri sono ASCII stampabili oltre ai caratteri di controllo <CR> e <LF>. I dati sono trasmessi sotto forma di frasi. Ogni frase inizia con il carattere “$” seguito da due lettere indicanti il tipo di apparecchio emettitore (ad esempio “GP” per un ricevitore GPS oppure “LC” per un ricevitore Loran-C), tre lettere indicanti il tipo di frase ed in seguito un certo numero di campi di dati separati da una virgola “,” e terminati da un campo opzionale di checksum seguito dai due caratteri di controllo <CR> e <LF>. Se i dati per un campo non sono disponibili, lo spazio fra le virgole di separazione è lasciato vuoto; quindi, la selezione di un campo deve essere eseguita basandosi sul conteggio delle virgole di separazione e non sul conteggio dei caratteri, anche perché i campi possono avere lunghezza variabile. Il campo di checksum opzionale consiste di un “*” seguito da due cifre alfanumeriche rappresentanti l’OR esclusivo di tutti i caratteri compresi fra “$” e “*” (“$” e “*” esclusi).

Per quanto riguarda i messaggi proprietari delle case costruttrici, devono avere la seguente struttura: caratteri “$P” seguiti da 3 lettere indicanti il costruttore ed in seguito un certo numero di campi secondo quanto stabilito dal produttore, con una struttura che segue lo standard indicato in precedenza. Per quanto riguarda i messaggi standard e la loro interpretazione si rimanda alla documentazione ufficiale sullo standard NMEA-0183.

In seguito saranno elencati solo ed esclusivamente i messaggi standard trasmessi dal “TRIPMATE” ed utilizzati nelle verifiche sperimentali eseguite.

20

2.3 MESSAGGI EMESSI DAL RICEVITORE “DELORME TRIPMATE”

I messaggi emessi dal “TRIPMATE” ed utilizzati nel programma applicativo descritto in una sezione successiva sono i seguenti:

- GGA
- GSA
- RMC

Le sigle indicano gli identificatori dei messaggi che seguono la sequenza “$GP” all’inizio di ogni messaggio. Tutti i parametri calcolati dal ricevitore, incluse le coordinate di posizione ed i dati di tempo, sono aggiornati ogni secondo. Quindi, anche i messaggi che trasportano queste informazioni sono inviati dal “TRIPMATE” una volta ogni secondo.

Per quanto riguarda le informazioni di longitudine e latitudine è utile indicare che il “DELORME TRIPMATE” utilizza come datum il sistema WGS84 e tale impostazione non è modificabile.

E’ importante chiarire che il ricevitore in questione trasmette e riceve anche altri messaggi che non sono presi in considerazione in quanto non utilizzati nell’applicazione.

Per una descrizione dettagliata e completa dei messaggi si faccia riferimento al manuale “Zodiac Serial Data Interface Specification” precedentemente citato.
2.3.1 MESSAGGIO GGA (GPS FIX DATA)

Il messaggio GGA contiene informazioni di tempo, di posizione e dati ulteriori relativi al calcolo della posizione. Il messaggio è generato solo dall’istante in cui la soluzione del problema di posizionamento ha superato i criteri di validità preimpostati.

La struttura del messaggio è la seguente (ogni campo è indicato con [xx] ed è spiegato in seguito):

$GPGGA,[01],[02],[03],[04],[05],[06],[07],[08],[09],[10],[11],[12],[13],[14]*[hh]<CR><LF>

Descrizione dei campi:

[01] Tempo universale (ore, minuti, secondi)
[02] Latitudine
[03] Direzione della latitudine (“N” = “Nord”, “S” = “Sud”)
[04] Longitudine
[06] Qualità della soluzione (“0” = “Soluzione non valida”, “1” = “Soluzione GPS”, “2” = “Soluzione DGPS”)
[07] Numero di satelliti in uso per il calcolo della posizione (può essere diverso dal numero di satelliti in vista)
[08] Valore di HDOP
[09] Altitudine sopra il livello del mare
[10] Unità di misura dell’altitudine (in genere metri “M”)
[11] Separazione del geoide (differenza fra l’ellissoide WGS-84 e il livello medio del mare)
[12] Unità di misura della separazione del geoide
[13] Età dei dati DGPS (distanza in secondi dall’ultimo aggiornamento DGPS)
[14] Identificativo della stazione di riferimento DGPS
[hh] Checksum

(Il ricevitore “TRIPMATE” non permette correzioni DGPS per cui i relativi campi non sono utilizzati)
2.3.2 messaggio GSA (gps dop and active satellites)

Il messaggio GSA contiene informazioni sui satelliti utilizzati per il calcolo della posizione ed informazioni sui parametri DOP.
La struttura del messaggio è la seguente (ogni campo è indicato con [xx] ed è spiegato in seguito):

$GPGSA,[01],[02],[03],[04],[05],[06],[07],[08],[09],[10],[11],[12],[13],[14],[15],[16],[17]*[hh]<CR><LF>

Descrizione dei campi:

[01] Modalità operativa ("M" = “Manuale” ovvero forzato ad operare in 3D, “A” = “Automatico” ovvero selezione automatica fra navigazione 2D e 3D)
[02] Modo della soluzione (“1” = “Non disponibile”, “2” = “2D”, “3” = “3D”)
[03] Identificativo del satellite 1 utilizzato nella soluzione
[04] Identificativo del satellite 2 utilizzato nella soluzione
[05] Identificativo del satellite 3 utilizzato nella soluzione
[06] Identificativo del satellite 4 utilizzato nella soluzione
[07] Identificativo del satellite 5 utilizzato nella soluzione
[08] Identificativo del satellite 6 utilizzato nella soluzione
[09] Identificativo del satellite 7 utilizzato nella soluzione
[10] Identificativo del satellite 8 utilizzato nella soluzione
[12] Identificativo del satellite 10 utilizzato nella soluzione
[13] Identificativo del satellite 11 utilizzato nella soluzione
[14] Identificativo del satellite 12 utilizzato nella soluzione
[15] Valore di PDOP
[16] Valore di HDOP
[17] Valore di VDOP
[hh] Checksum

(I codici identificativi dei satelliti permettono di sapere quali satelliti della costellazione sono utilizzati per il calcolo della posizione. Trattandosi di un ricevitore a 12 canali, è possibile il tracciamento di 12 satelliti contemporaneamente)

2.3.3 MESSAGGIO RMC (RECOMMENDED MINIMUM SPECIFIC GPS DATA)

Il messaggio RMC contiene informazioni su tempo, data, posizione, velocità e direzione di spostamento. I campi in questo messaggio contengono dati anche quando il ricevitore non ha ancora raggiunto la soluzione del problema di posizionamento. Nel caso in cui fosse possibile una inizializzazione da parte dell’utente, i campi del messaggio rappresenterebbero la soluzione imposta esternamente; in caso contrario i valori iniziali sono in genere completamente errati.

La struttura del messaggio è la seguente (ogni campo è indicato con [xx] ed è spiegato in seguito):

$GPRMC,[01],[02],[03],[04],[05],[06],[07],[08],[09],[10],[11]*[hh]<CR><LF>

Descrizione dei campi:

[01] Tempo universale (ore, minuti, secondi)
[03] Latitudine
[04] Direzione della latitudine (“N” = “Nord”, “S” = “Sud”)
[05] Longitudine
[07] Velocità (espressa in m/s)
[08] Direzione di movimento (“0” = “Nord”… espressa in gradi)
[09] Data (giorno, mese, anno)
[10] Variazione magnetica (espressa in gradi)

[hh] Checksum

(Il campo [02] ha importanza fondamentale in quanto assumendo il valore “A” indica il raggiungimento della corretta soluzione del problema di posizionamento e la conseguente validità dei dati di posizione, velocità e tempo inviati)

Oltre ai messaggi descritti, il ricevitore “DELORME TRIPMATE” invia ulteriori messaggi che non sono stati presi in considerazione in quanto non utili allo scopo dell’applicazione. Inoltre, il ricevitore accetta in ingresso alcuni messaggi proprietari utili per la configurazione dello stesso. A questo proposito è utile consultare il documento “Zodiac Serial Data Interface Specification” tenendo presente che il ricevitore “DELORME TRIPMATE” non permette l’utilizzo di tutti i messaggi del chipset “ZODIAC”, ma utilizza solo un set ridotto degli stessi.
2.4 DESCRIZIONE DEL PROGRAMMA DI VISUALIZZAZIONE E DATA LOGGING

Il programma creato per testare il ricevitore è scritto in “Visual Basic 5.0” (per piattaforma Ms-Windows 32 bit) e permette l’interpretazione di messaggi NMEA-0183 emessi da due ricevitori collegati a due porte seriali (COM1 e COM2) di un calcolatore.
Il programma accetta in ingresso i messaggi GGA, GSA e RMC e visualizza una serie di informazioni ricavate dagli stessi. Inoltre, il programma genera una serie di files di testo in cui sono salvate tutte le informazioni ricavate dai messaggi.
Il programma calcola e visualizza la distanza fra i due ricevitori considerando il ricevitore collegato alla porta COM1 come base fissa e l’altro come ricevitore mobile; i valori di distanza rappresentano, quindi, la posizione del ricevitore mobile (COM2) rispetto alla base fissa (COM1).
E’ importante sottolineare che il programma può funzionare con qualsiasi ricevitore compatibile NMEA-0183 purché sia in grado di generare i messaggi GGA, GSA e RMC; nel caso di utilizzo di ricevitori “DELORME TRIPMATE”, il programma si occupa di fornire la corretta procedura di inizializzazione.

2.4.1 DESCRIZIONE DELLA FINESTRA DEL PROGRAMMA

Sulla finestra del programma sono inizialmente presenti due pulsanti: “COM1 ON” e “COM2 ON”; i due pulsanti permettono di selezionare le porte seriali che potranno essere utilizzate. Premendo uno di tali pulsanti appaiono le caselle che conterranno i parametri relativi alla porta seriale prescelta; inoltre, appare un pulsante “ATTIVAZIONE SERIALI” che attiva le porte precedentemente selezionate.
E’ possibile utilizzare sia un ricevitore, sia due ricevitori contemporaneamente. Solo nel caso in cui si attivino due porte, sono visualizzate le caselle per le distanze relative.
Dopo aver attivato le seriali, è possibile, premendo il pulsante “AVVIA SALVATAGGIO”, avviare la scrittura dei dati sui file che saranno in seguito descritti.
Ripremendo i pulsanti, è possibile riportarsi nelle condizioni precedenti.
In seguito saranno descritte le caselle presenti nella finestra del programma.
Le caselle all’estrema sinistra indicano i seguenti parametri:

- “NORD”: Indica la distanza espressa in metri fra il ricevitore e l’equatore terrestre in direzione Nord (Per distanza in direzione Nord si intende la lunghezza dell’arco di meridiano terrestre che unisce il punto in questione con il punto di uguale longitudine sull’equatore terrestre. Questa definizione è valida in qualunque altro punto della relazione in cui si faccia riferimento ad una distanza in direzione Nord).
- “EST”: Indica la distanza espressa in metri fra il ricevitore ed il meridiano di Greenwich in direzione est (Per distanza in direzione Est si intende la lunghezza dell’arco di parallelo terrestre che unisce il punto in questione con il punto di uguale latitudine sul meridiano di Greenwich. Questa definizione è valida in qualunque altro punto della relazione in cui si faccia riferimento ad una distanza in direzione Est).
- “LATITUDINE”: Indica il valore di latitudine in gradi.
- “LONGITUDINE”: Indica il valore di longitudine in gradi.
- “ALTITUDINE”: Indica il valore di altitudine in metri.
- “SPEED”: Indica il valore di velocità in m/s.
- “HEADING”: Indica la direzione di movimento in gradi (“0” indica “Direzione Nord”, “90” indica “Direzione Est”,…).
- “DATAVALID”: Indica se i valori si posizione, tempo e data sono validi (“0” = “Dati non validi”, “1” = “Dati validi”).
- “FIXMODE”: Indica la modalità di navigazione (Il valore “1” indica “Soluzione non disponibile”; il valore “2” indica “Navigazione in 2 dimensioni” mentre “3” indica “Navigazione in 3 dimensioni”).
- “PDOP”: Indica il valore di PDOP.
- “HDOP”: Indica il valore di HDOP.
- “VDOP”: Indica il valore di VDOP.
- “UTC”: Indica il tempo universale.
- “DATA”: Indica la data.
Le righe più in basso nella finestra mostrano i messaggi che giungono alle porte seriali.

Le caselle sotto l'etichetta “SATELLITI” indicano per ogni canale del ricevitore il satellite utilizzato per il calcolo della posizione.

Le caselle all'estrema destra contengono informazioni sulla distanza relativa fra i due ricevitori espressa in metri (Per distanza non si intende distanza euclidea, ma la distanza ottenuta percorrendo un arco di circonferenza su una sfera):

- “DIST NORD”: Indica la distanza in direzione Nord.
- “DIST EST”: Indica la distanza in direzione Est.
- “DIST MODULO”: Indica il modulo della distanza.
- “DIST DIREZ”: Indica la direzione in gradi del vettore di distanza (“0” indica “Direzione Nord”, “90” indica “Direzione Est”,…).

La casella “TEMPO RIF.” indica un valore di tempo espresso in secondi che assume il valore iniziale “1” o nell'istante in cui il programma è avviato oppure nell'istante in cui si attiva il salvataggio su disco delle informazioni. Questo segnale di clock è stato creato per avere un'indicazione temporale nelle prove sperimentali.

Tutti i valori mostrati sono direttamente estratti dai messaggi NMEA-0183 ad esclusione dei valori di distanza ed i valori di posizione “NORD” e “EST”; questi sono calcolati utilizzando i valori di latitudine e longitudine e si suppone che la terra abbia forma perfettamente sferica con raggio pari a 6367650 m.

In questi calcoli non è stato preso in considerazione il valore di altitudine in quanto ininfluente rispetto alla grandezza degli errori in gioco.

2.4.2 DESCRIZIONE DEI FILES GENERATI

Come detto in precedenza, premendo il pulsante “AVVIA SALVATAGGIO” inizia la scrittura dei parametri estratti dai messaggi NMEA-0183 su una serie di files per permettere un'analisi successiva più accurata degli stessi.

I files sono generati nella stessa directory del programma e sono files di testo in cui ogni riga è costituita da un solo valore; ogni valore rappresenta l'informazione nell'istante di tempo indicato dal valore “TEMPO RIF.” e la distanza di tempo fra una riga e la successiva è di 1 s.

Alcuni files sono sempre generati per entrambe le porte seriali anche se una di queste è inattiva. Il numero al termine del nome di ogni file indica la porta seriale (COM1 o COM2) alla quale il file si riferisce.
In seguito sono elencati i files di questo tipo (il carattere “x” indica il numero di porta seriale associata):

- “DATAVALx.TXT”: Indica se i valori si posizione, tempo e data sono validi (“0” = “Dati non validi”, “1” = “Dati validi”).
- “FIXMx.TXT”: Indica la modalità di navigazione (Il valore “1” indica “Soluzione non disponibile”; il valore “2” indica “Navigazione in 2 dimensioni” mentre “3” indica “Navigazione in 3 dimensioni”).
- “UTCx.TXT”: Indica il tempo universale.
- “DATAx.TXT”: Indica la data.
- “LATITx.TXT”: Indica il valore di latitudine in gradi.
- “LONGITx.TXT”: Indica il valore di longitudine in gradi.
- “ALTITx.TXT”: Indica il valore di altitudine in metri.
- “NORDx.TXT”: Indica la distanza espressa in metri fra il ricevitore e l’equatore terrestre in direzione nord.
- “ESTx.TXT”: Indica la distanza espressa in metri fra il ricevitore ed il meridiano di Greenwich in direzione est.
- “PDOPx.TXT”: Indica il valore di PDOP.
- “HDOPx.TXT”: Indica il valore di HDOP.
- “VDOPx.TXT”: Indica il valore di VDOP.
- “SPEEDx.TXT”: Indica il valore di velocità in m/s.
- “HEADINGx.TXT”: Indica la direzione di movimento in gradi (“0” indica “Direzione Nord”, “90” indica “Direzione Est”,…).

Altri files globali sono generati senza distinzione di porta seriale e sono i seguenti:

- “TEMPORIF.TXT”: Valore di riferimento temporale.
- “DISTNORD.TXT”: Indica la distanza in direzione Nord.
- “DISTEST.TXT”: Indica la distanza in direzione Est.
- “DISTMOD.TXT”: Indica il modulo della distanza.
- “DISTDIR.TXT”: Indica la direzione in gradi del vettore di distanza (“0” indica “Direzione Nord”, “90” indica “Direzione Est”,…).

Tutti questi files sono sempre generati anche se, ovviamente, i files relativi alle misure differenziali non hanno senso nel caso in cui si stia utilizzando un solo ricevitore. Come risulta chiaro, i valori rappresentati nei file sono l’esatta copia di quanto mostrato a video, con l’esclusione di alcune informazioni ritenute poco interessanti. E’ importante sottolineare che i valori inclusi nel file “TEMPORIF.TXT” sono esattamente identici ai valori mostrati in tempo reale a video, permettendo all’utente di avere un legame tra le azioni eseguite sui ricevitori e quanto indicato nei files.
PARTE III
PROVE SPERIMENTALI

Al fine di valutare le caratteristiche del ricevitore in prova sono stati condotti alcuni test sperimentali utilizzando il programma precedentemente descritto.
Il ricevitore “DELORME TRIPMATE” è stato collegato ad un calcolatore mediante porta seriale RS-232. I dati raccolti tramite il programma di interpretazione dei messaggi NMEA-0183 sono presentati in seguito in veste grafica.
Le prove sono state condotte su un’area approssimativamente quadrata di lato 20 m in una zona residenziale non particolarmente edificata. Nella zona di prova non sono presenti edifici di elevata altezza che possano compromettere in maniera significativa la visione del cielo.
Le prove sono state condotte trasportando il ricevitore manualmente; non è, dunque, presente un segnale che indichi la dinamica effettiva degli spostamenti; i dati disponibili riguardano solo ed esclusivamente le coordinate dei punti raggiunti in determinati istanti di tempo; gli spostamenti sono sempre avvenuti seguendo la retta che congiunge il punto di partenza con il punto di arrivo. Per semplificare la valutazione dei dati raccolti, tutti gli spostamenti sono avvenuti nelle due direzioni ortogonali nord-sud ed est-ovest.
Come affermato in precedenza, nessuna informazione è disponibile riguardo la velocità con la quale i movimenti avvengono. I grafici rappresentano i valori inviati dal ricevitore sotto forma di messaggi NMEA-0183. I grafici permettono, quindi, di comparare le effettive posizioni raggiunte con i valori forniti dal ricevitore. Quando ritenuto necessario, i valori effettivi sono indicati graficamente con il simbolo “x”. Tutti i valori di posizione sono indicati in metri e sono riferiti ad un punto di riferimento comune a tutte le prove indicato come “Base di Partenza”. Il ricevitore è sempre attivato nella posizione della “Base di Partenza”; gli spostamenti hanno inizio solo dall’istante in cui il ricevitore indica di aver raggiunto una soluzione valida e, quindi, dopo aver agganciato il segnale di tutti i satelliti in vista.
Per quanto riguarda i grafici delle misure fornite dal ricevitore, tutte le grandezze di spostamento sono normalizzate rispetto al valore indicato nella “Base di Partenza” all’inizio della prova; per questo motivo tutti i grafici mostrano nell’istante iniziale valori per le posizioni Nord e Sud nulli.
I valori di tempo sono sempre espressi in secondi a partire dall’istante di inizio della prova.
Le prove 1, 2, 3, 4 e 5 sono state condotte nello stesso modo e sono presentate nella stessa modalità grafica. I grafici sono indicati con il nome “Fig. x-y” in cui “x” indica il numero della prova ed “y” indica il tipo di grafico.
In seguito è fornita una descrizione dei tipi di grafico presentati per le prove 1, 2, 3, 4 e 5:

- “Fig. x-1” “DIREZIONE NORD” indica la coordinata Nord-Sud dei punti raggiunti in funzione del tempo. Valori positivi indicano spostamento in direzione Nord rispetto alla base di partenza iniziale, mentre valori negativi indicano spostamento in direzione Sud. Come già indicato, valori nulli indicano la posizione della “Base di Partenza” nell’istante iniziale della prova. Dove ritenuto utile, sono indicati con il simbolo “x” i valori corretti delle posizioni effettivamente raggiunte per un confronto con i valori forniti dal ricevitore.
- “Fig. x-2” “DIREZIONE EST” indica la coordinata Est-Ovest dei punti raggiunti in funzione del tempo. Valori positivi indicano spostamento in direzione Est, valori negativi indicano spostamento in direzione Ovest. Come già indicato, valori nulli indicano la posizione “Base di Partenza”. Dove ritenuto utile, sono indicati con il simbolo “x” i valori corretti delle posizioni effettivamente raggiunte per un confronto con i valori forniti dal ricevitore.
- “Fig. x-3” “DIREZIONE NORD (Scala Normalizzata)” indica le stesse informazioni riportate nel grafico “Fig. x-1”, ma con scala di visualizzazione ottimizzata al fine di migliorare la visualizzazione dei dettagli.
- “Fig. x-4” “DIREZIONE EST (Scala Normalizzata)” indica le stesse informazioni riportate nel grafico “Fig. x-2”, ma con scala di visualizzazione ottimizzata al fine di migliorare la visualizzazione dei dettagli.
- “Fig. x-5” “MODULO VETTORE POSIZIONE” indica i valori del modulo del vettore di posizione nel tempo.
- “Fig. x-6” “ANGOLO VETTORE POSIZIONE” indica i valori dell’angolo del vettore di posizione nel tempo.
- “Fig. x-7” “POSIZIONI RAGGIUNTE” indica tutti i punti raggiunti durante la prova secondo le misure fornite dal ricevitore. Il grafico rappresenta una visione dell’area in cui è avvenuta la prova. I punti cardinali sono riportati sugli assi cartesiani. Naturalmente, non esiste alcun riferimento agli istanti temporali. Come nei grafici precedenti i punti effettivamente raggiunti sono indicati dal simbolo “x”.
- “Fig. x-8” “DATI VALIDI” indica i valori assunti nel tempo dal parametro indicante la validità dei valori di posizione, tempo e velocità forniti dal ricevitore. Tale parametro è generato dal ricevitore stesso ed è legato alla visibilità o meno di un numero adeguato di satelliti. Il valore “0” indica “Soluzione non valida” mentre il valore “1” indica “Soluzione valida”.
- “Fig. x-9” “MODO DI NAVIGAZIONE” indica la modalità di navigazione del ricevitore al variare del tempo. Il valore “1” indica “Soluzione non disponibile”; il valore “2” indica “Navigazione in 2 dimensioni” mentre “3” indica “Navigazione in 3 dimensioni”.
- “Fig. x-10” “PDOP” indica i valori assunti nel tempo dal parametro PDOP.
- “Fig. x-11” “HDOP” indica i valori assunti nel tempo dal parametro HDOP.
- “Fig. x-12” “VDOP” indica i valori assunti nel tempo dal parametro VDOP.

Per quanto riguarda le prove 6 e 7 si rimanda ad una descrizione dettagliata successiva, trattandosi diprove con obiettivi diversi rispetto alle precedenti.
3.1 PROVA 1

Nella Prova 1 tutti i movimenti sono stati effettuati con la velocità di una camminata normale. I valori effettivi di posizione sono indicati nella tabella seguente e in alcuni grafici contrassegnati con il simbolo “x”.

La tabella indica l’istante in cui una determinata posizione è stata raggiunta; si tenga presente che ogni spostamento ha richiesto un tempo medio di 5 s.

<table>
<thead>
<tr>
<th>Tempo [s]</th>
<th>Posizione raggiunta [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>30</td>
<td>10 m Nord</td>
</tr>
<tr>
<td>60</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>90</td>
<td>10 m Nord</td>
</tr>
<tr>
<td>120</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>150</td>
<td>10 m Nord</td>
</tr>
<tr>
<td>180</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>210</td>
<td>10 m Est</td>
</tr>
<tr>
<td>240</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>270</td>
<td>10 m Est</td>
</tr>
<tr>
<td>300</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>330</td>
<td>10 m Est</td>
</tr>
<tr>
<td>360</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>390</td>
<td>5 m Sud</td>
</tr>
<tr>
<td>420</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>450</td>
<td>5 m Sud</td>
</tr>
<tr>
<td>480</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>510</td>
<td>5 m Sud</td>
</tr>
<tr>
<td>540</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>570</td>
<td>5 m Ovest</td>
</tr>
<tr>
<td>600</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>630</td>
<td>5 m Ovest</td>
</tr>
<tr>
<td>660</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>690</td>
<td>5 m Ovest</td>
</tr>
<tr>
<td>720</td>
<td>Base di partenza</td>
</tr>
</tbody>
</table>

Nelle pagine seguenti sono presentati i grafici descritti precedentemente relativi alla Prova 1.
3.2 PROVA 2

Nella Prova 2 tutti i movimenti sono stati effettuati con la velocità di una camminata lenta. I valori effettivi di posizione sono indicati nella tabella seguente unitamente ai tempi ed alle azioni di movimento.

Nei grafici con il simbolo “x” sono indicati solo gli istanti e le posizioni in cui il movimento ha avuto termine.

In genere lo spostamento da una posizione alla successiva ha richiesto un tempo medio di 15 s.

<table>
<thead>
<tr>
<th>Tempo [s]</th>
<th>Posizione raggiunta [m] e movimenti</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>60</td>
<td>Inizio movimento in direzione Est</td>
</tr>
<tr>
<td>75</td>
<td>10 m Est</td>
</tr>
<tr>
<td>120</td>
<td>Inizio movimento in direzione della base</td>
</tr>
<tr>
<td>135</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>180</td>
<td>Inizio movimento in direzione Est</td>
</tr>
<tr>
<td>195</td>
<td>10 m Est</td>
</tr>
<tr>
<td>240</td>
<td>Inizio movimento in direzione della base</td>
</tr>
<tr>
<td>255</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>300</td>
<td>Inizio movimento in direzione Nord</td>
</tr>
<tr>
<td>315</td>
<td>10 m Nord</td>
</tr>
<tr>
<td>360</td>
<td>Inizio movimento in direzione della base</td>
</tr>
<tr>
<td>375</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>420</td>
<td>Inizio movimento in direzione Nord</td>
</tr>
<tr>
<td>435</td>
<td>10 m Nord</td>
</tr>
<tr>
<td>480</td>
<td>Inizio movimento in direzione della base</td>
</tr>
<tr>
<td>495</td>
<td>Base di partenza</td>
</tr>
</tbody>
</table>

Nelle pagine seguenti sono presentati i grafici descritti precedentemente relativi alla Prova 2.
3.3 PROVA 3

Nella Prova 3 tutti i movimenti sono stati effettuati con una velocità decisamente bassa. I valori effettivi di posizione sono indicati nella tabella seguente unitamente ai tempi ed alle azioni di movimento. Nei grafici con il simbolo “x” sono indicati solo gli istanti e le posizioni in cui il movimento ha avuto termine. In genere lo spostamento da una posizione alla successiva nel caso di una distanza di 10 m ha richiesto un tempo medio di 45-50 s.

<table>
<thead>
<tr>
<th>Tempo [s]</th>
<th>Posizione raggiunta [m] e movimenti</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>60</td>
<td>Inizio movimento in direzione Est</td>
</tr>
<tr>
<td>110</td>
<td>10 m Est</td>
</tr>
<tr>
<td>150</td>
<td>Inizio movimento in direzione della base</td>
</tr>
<tr>
<td>200</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>240</td>
<td>Inizio movimento in direzione Est</td>
</tr>
<tr>
<td>285</td>
<td>10 m Est</td>
</tr>
<tr>
<td>330</td>
<td>Inizio movimento in direzione della base</td>
</tr>
<tr>
<td>375</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>420</td>
<td>Inizio movimento in direzione Nord</td>
</tr>
<tr>
<td>470</td>
<td>10 m Nord</td>
</tr>
<tr>
<td>510</td>
<td>Inizio movimento in direzione della base</td>
</tr>
<tr>
<td>558</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>600</td>
<td>Inizio movimento in direzione Nord</td>
</tr>
<tr>
<td>643</td>
<td>10 m Nord</td>
</tr>
<tr>
<td>690</td>
<td>Inizio movimento in direzione della base</td>
</tr>
<tr>
<td>737</td>
<td>Base di partenza</td>
</tr>
</tbody>
</table>

Nelle pagine seguenti sono presentati i grafici descritti precedentemente relativi alla Prova 3.
3.4 PROVA 4

Nella Prova 4 tutti i movimenti sono stati effettuati con la velocità di una camminata normale.
I valori effettivi di posizione sono indicati nella tabella seguente unitamente ai tempi ed alle azioni di movimento.
Nei grafici non sono indicate le posizioni effettivamente raggiunte in quanto difficilmente stimabili nel tempo.

<table>
<thead>
<tr>
<th>Tempo [s]</th>
<th>Posizione raggiunta [m] e movimenti</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>60</td>
<td>Partenza dalla base;</td>
</tr>
<tr>
<td></td>
<td>raggiungimento del punto a 10 m Est;</td>
</tr>
<tr>
<td></td>
<td>raggiungimento della base;</td>
</tr>
<tr>
<td></td>
<td>raggiungimento del punto a 10 m Est;</td>
</tr>
<tr>
<td></td>
<td>raggiungimento della base;</td>
</tr>
<tr>
<td></td>
<td>raggiungimento del punto a 10 m Est;</td>
</tr>
<tr>
<td></td>
<td>raggiungimento della base;</td>
</tr>
<tr>
<td></td>
<td>raggiungimento del punto a 10 m Est;</td>
</tr>
<tr>
<td></td>
<td>raggiungimento della base.</td>
</tr>
<tr>
<td></td>
<td>(Tutto il movimento è avvenuto senza soste)</td>
</tr>
<tr>
<td>125</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>180</td>
<td>Partenza dalla base;</td>
</tr>
<tr>
<td></td>
<td>raggiungimento del punto a 10 m Nord;</td>
</tr>
<tr>
<td></td>
<td>raggiungimento della base;</td>
</tr>
<tr>
<td></td>
<td>raggiungimento del punto a 10 m Nord;</td>
</tr>
<tr>
<td></td>
<td>raggiungimento della base;</td>
</tr>
<tr>
<td></td>
<td>raggiungimento del punto a 10 m Nord;</td>
</tr>
<tr>
<td></td>
<td>raggiungimento della base;</td>
</tr>
<tr>
<td></td>
<td>raggiungimento del punto a 10 m Nord;</td>
</tr>
<tr>
<td></td>
<td>raggiungimento della base.</td>
</tr>
<tr>
<td></td>
<td>(Tutto il movimento è avvenuto senza soste)</td>
</tr>
<tr>
<td>245</td>
<td>Base di partenza</td>
</tr>
</tbody>
</table>

Nelle pagine seguenti sono presentati i grafici descritti precedentemente relativi alla Prova 4.
3.5 PROVA 5

Nella Prova 5 tutti i movimenti sono stati effettuati con velocità abbastanza elevata e su brevissime distanze.
I valori effettivi di posizione raggiunti sono indicati nella tabella seguente.
Nei grafici con il simbolo “x” sono indicate le posizioni raggiunte.
Per quanto riguarda i tempi, è possibile supporre che ogni movimento abbia richiesto un tempo inferiore ad 1 s.

<table>
<thead>
<tr>
<th>Tempo [s]</th>
<th>Posizione raggiunta [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>60</td>
<td>2 m Nord</td>
</tr>
<tr>
<td>75</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>90</td>
<td>2 m Nord</td>
</tr>
<tr>
<td>105</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>120</td>
<td>2 m Est</td>
</tr>
<tr>
<td>135</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>150</td>
<td>2 m Est</td>
</tr>
<tr>
<td>165</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>180</td>
<td>2 m Sud</td>
</tr>
<tr>
<td>195</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>210</td>
<td>2 m Sud</td>
</tr>
<tr>
<td>225</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>240</td>
<td>2 m Ovest</td>
</tr>
<tr>
<td>255</td>
<td>Base di partenza</td>
</tr>
<tr>
<td>270</td>
<td>2 m Ovest</td>
</tr>
<tr>
<td>285</td>
<td>Base di partenza</td>
</tr>
</tbody>
</table>

Nelle pagine seguenti sono presentati i grafici descritti precedentemente relativi alla Prova 5.
3.6 PROVA 6

Nella Prova 6 il ricevitore è stato acceso nella solita posizione di partenza; in seguito, dopo aver raggiunto la validità della soluzione, è stato coperto ripetutamente con un foglio di alluminio in modo tale da impedire la ricezione dei segnali dai satelliti.
Lo scopo della prova è di valutare la resistenza del ricevitore alla perdita temporanea del segnale satellitare. Per questo motivo il ricevitore è stato coperto per tempi ogni volta maggiori. Il ricevitore è sempre stato mantenuto nella stessa posizione.
Nella tabella seguente sono indicati gli istanti in cui il ricevitore è stato coperto e successivamente scoperto con il foglio di alluminio.

<table>
<thead>
<tr>
<th>Tempo [s]</th>
<th>Antenna coperta con foglio di alluminio [Si-No]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>60</td>
<td>Si</td>
</tr>
<tr>
<td>65</td>
<td>No</td>
</tr>
<tr>
<td>90</td>
<td>Si</td>
</tr>
<tr>
<td>100</td>
<td>No</td>
</tr>
<tr>
<td>120</td>
<td>Si</td>
</tr>
<tr>
<td>140</td>
<td>No</td>
</tr>
<tr>
<td>180</td>
<td>Si</td>
</tr>
<tr>
<td>210</td>
<td>No</td>
</tr>
<tr>
<td>240</td>
<td>Si</td>
</tr>
<tr>
<td>285</td>
<td>No</td>
</tr>
<tr>
<td>330</td>
<td>Si</td>
</tr>
<tr>
<td>390</td>
<td>No</td>
</tr>
<tr>
<td>480</td>
<td>Si</td>
</tr>
<tr>
<td>600</td>
<td>No</td>
</tr>
</tbody>
</table>

I grafici forniti sono i seguenti:

• “Fig. 6-1” “DATI VALIDI” indica i valori assunti nel tempo dal parametro indicante la validità dei valori di posizione, tempo e velocità forniti dal ricevitore. Tale parametro è generato dal ricevitore stesso ed è legato alla visibilità o meno di un numero adeguato di satelliti. Il valore “0” indica “Soluzione non valida” mentre il valore “1” indica “Soluzione valida”.
• “Fig. 6-2” “MODO DI NAVIGAZIONE” indica la modalità di navigazione del ricevitore al variare del tempo. Il valore “1” indica “Soluzione non disponibile”; il valore “2” indica “Navigazione in 2 dimensioni” mentre “3” indica “Navigazione in 3 dimensioni”.

Nessun grafico è fornito relativamente ai valori di posizione in quanto negli istanti in cui il ricevitore non è in grado di calcolare una soluzione corretta, emette valori di posizione, velocità e tempo completamente errati. Una rappresentazione grafica di questi è assolutamente priva di significato. E’ importante notare che, dopo la perdita completa del segnale, il ricevitore, dopo aver riacquisito il segnale di tutti i satelliti in vista, si comporta esattamente come dopo essere stato spento e, quindi, riacceso. L’unica differenza consiste nel fatto che il tempo di riacquisizione è decisamente più basso in quanto il ricevitore sfrutta le informazioni di posizione e tempo presenti in memoria (RAM volatile) per favorire la ricerca dei satelliti ed il conseguente aggancio al C/A-Code.
Nelle pagine seguenti sono presentati i grafici descritti precedentemente relativi alla Prova 6.
3.7 PROVA 7

Nella prova 7 sono stati utilizzati due ricevitori diversi; i ricevitori sono stati collegati a due porte seriali di uno stesso calcolatore in modo tale da avere un perfetto sincronismo fra i valori ottenuti. Sono presentati due gruppi di grafici: i grafici contrassegnati dalla lettera “A” si riferiscono ad un ricevitore “GARMIN” ad 8 canali, mentre i grafici contrassegnati dalla lettera “B” si riferiscono al ricevitore “DELORME TRIPMATE” utilizzato in tutte le prove precedenti. I ricevitori sono stati posizionati nello stesso punto e mai spostati. L’obiettivo della prova è di valutare il comportamento dei ricevitori in presenza degli errori descritti nella sezione di descrizione generale del sistema GPS. In particolare si è voluto evidenziare il comportamento dei ricevitori in presenza dell’errore dovuto alla Selective Availability. I grafici sono equivalenti ai grafici delle prove 1, 2, 3, 4 e 5; nessun riferimento è indicato relativamente alle posizioni effettive in quanto i ricevitori sono stati mantenuti in posizione fissa per l’intera durata della prova. Come sarà evidenziato nella parte conclusiva, questa prova è di fondamentale importanza per la valutazione del comportamento assai particolare del ricevitore “DELORME TRIPMATE”.

Nelle pagine seguenti sono presentati i grafici descritti precedentemente relativi alla Prova 7.
3.8 CONCLUSIONI

Il confronto fra i valori forniti dal ricevitore “DELORME TRIPMATE” ed i valori reali permette di ottenere alcune informazioni relativamente alle prestazioni del ricevitore. In tutte le prove è possibile notare come il ricevitore sia in molti casi in grado di filtrare gli errori dovuti alla SA; in quasi tutte le prove il ricevitore indica valori di posizione costanti nei casi in cui è realmente fermo. Con buona probabilità questo comportamento è raggiunto sfruttando il tracciamento continuo della fase della portante del segnale satellitare. Purtroppo non è disponibile alcun informazione da parte della casa costruttrice riguardo alla tecnica utilizzata. La Prova 7 è un esempio lampante di questo comportamento. Si nota, infatti, che il ricevitore, per un tempo superiore a 4000 s, indica correttamente sempre la stessa posizione. Questo è ovviamente in disaccordo con la presenza degli errori intrinseci del sistema GPS e con la presenza dell’errore dovuto alla SA. Nella stessa prova il ricevitore “GARMIN” fornisce valori di posizione evidentemente affetti dall’errore della SA. Il fatto che il “DELORME TRIPMATE” abbia un comportamento di questo genere non deve trarre in inganno. Ad ogni accensione il ricevitore fornisce, infatti, valori di posizione notevolmente diversi come indicato in seguito, anche se il punto iniziale di ogni prova è sempre identico.

Nella tabella seguente sono forniti i valori assoluti di posizione indicati dal ricevitore all’inizio di 10 prove ripetute nella stessa posizione, unitamente al tempo trascorso dall’istante di accensione all’istante di raggiungimento della soluzione valida:

<table>
<thead>
<tr>
<th>Prova</th>
<th>Nord [m]</th>
<th>Est [m]</th>
<th>Tempo per Soluzione Valida [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5464262.6</td>
<td>778675.4</td>
<td>115</td>
</tr>
<tr>
<td>2</td>
<td>5064312.0</td>
<td>778675.2</td>
<td>118</td>
</tr>
<tr>
<td>3</td>
<td>5064210.1</td>
<td>778690.6</td>
<td>126</td>
</tr>
<tr>
<td>4</td>
<td>5064244.6</td>
<td>778671.2</td>
<td>141</td>
</tr>
<tr>
<td>5</td>
<td>5064251.8</td>
<td>778715.9</td>
<td>141</td>
</tr>
<tr>
<td>6</td>
<td>5064277.0</td>
<td>778738.3</td>
<td>141</td>
</tr>
<tr>
<td>7</td>
<td>5064202.0</td>
<td>778659.4</td>
<td>148</td>
</tr>
<tr>
<td>8</td>
<td>5064099.7</td>
<td>778773.9</td>
<td>141</td>
</tr>
<tr>
<td>9</td>
<td>5064292.4</td>
<td>778730.1</td>
<td>120</td>
</tr>
<tr>
<td>10</td>
<td>5064202.3</td>
<td>778719.9</td>
<td>135</td>
</tr>
</tbody>
</table>

Come è possibile notare, in direzione Nord la differenza fra valore massimo e valore minimo è di circa 90 m; in direzione Est la differenza fra valore massimo e valore minimo è di circa 115 m. I valori ottenuti in questa esperienza sono perfettamente compatibili con le prestazioni del sistema GPS descritte nella Parte 1.

Non disponendo di informazioni tecniche, è solo possibile ipotizzare che il ricevitore sia in grado di inseguire piccoli e brevi movimenti con un metodo di inseguimento di fase del carrier che permette prestazioni di gran lunga superiori rispetto al tracciamento del C/A-Code.

Dalla discussione precedente si deduce l’impossibilità di realizzare un sistema di correzione differenziale basato sul ricevitore “DELORME TRIPMATE”. Per questo motivo non è stato possibile mettere in pratica l’idea iniziale del progetto.

Per quanto riguarda le prestazioni del ricevitore nell’inseguire movimenti brevi e su corte distanze, si nota la capacità di fornire valori decisamente buoni nel caso in cui si faccia riferimento ad una misura relativa rispetto al punto iniziale della prova.

Se si considera ad esempio la Prova 1, si nota nella parte iniziale la capacità di inseguire movimenti di una decina di metri con una buona precisione. E’ importante notare che nell’intorno dei 300 s, pur essendo idealmente immobile rispetto alla direzione Nord, il ricevitore indica un movimento di 50 m. Probabilmente in presenza di movimento, il ricevitore risulta particolarmente condizionato dagli errori
introdotti dalla SA.
In tutte le prove il ricevitore ha un comportamento molto simile a quanto descritto.
Per quanto riguarda la Prova 3, si nota come il ricevitore non sia in grado di avvertire spostamenti molto lenti. Si può pensare che a fronte di variazioni estremamente lente il ricevitore supponga di essere fermo.
Non essendo disponibile alcun tipo di informazione tecnica, è impossibile dare una descrizione certa della metodologia di navigazione adottata dal “DELORME TRIPMATE”.
La Prova 5 mostra, invece, l'insensibilità del ricevitore nei confronti di movimenti su brevi distanze.
La Prova 6 pone in evidenza la capacità del ricevitore di resistere alla temporanea perdita del segnale satellitare. Come indicato dal parametro indicante la validità della soluzione, il tempo massimo di assenza di segnale tollerato è di 10 s.

Riassumendo quanto già indicato in precedenza, è possibile dedurre dalle prove sperimentali un buon comportamento del ricevitore anche a fronte di spostamenti sufficientemente brevi; purtroppo il problema principale è l'assoluta impossibilità di implementare un sistema differenziale a causa del comportamento particolare del ricevitore in prova.