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Under the sword lifted high,

There is hell making you tremble.

But go ahead,

And you have the land of bliss.

– Miyamoto Musashi





Stefano Bennati Contents

Contents

Introduzione 5

La Robotica Cognitiva . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

I concetti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Gli obiettivi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

L’architettura cognitiva ACT-R . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

La realizzazione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

La valutazione . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Conclusioni . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1. Abstract 15

2. Introduction 17

2.1. Act-R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2. The objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3. Robot 23

3.1. Chassis design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2. Sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4. Environment 29

4.1. The Perceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2. The labyrinth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3. Properties of the environment . . . . . . . . . . . . . . . . . . . . . . . . . 31

5. Interface 33

5.1. Low level lisp function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2. Module definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3. Design studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4. Module implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1



Stefano Bennati Contents

6. Model 45

6.1. The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2. A revised approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3. The internal representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4. Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.4.1. Junction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.4.2. Wall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.4.3. Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.4.4. False alarm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.5. Distance computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.5.1. Example case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7. The Simulator 67

7.1. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8. Evaluation 73

8.1. Deterministic perimeter strategy. . . . . . . . . . . . . . . . . . . . . . . . 75

8.2. Random walk. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

8.3. Gaussian perimeter strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

9. Conclusions 81

Acknowledgments i

A. Source code ii

A.1. nxt-motor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

A.2. nxt-touch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

A.3. nxt-vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

A.4. nxt-distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

A.5. Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvi

B. ACT-R Model xxiii

References lxxiii

2



Stefano Bennati List of Figures

List of Figures

2.1. Left: An example of a test labyrinth. Right: Layouts of two mazes: The

task is to find the target object (red dot) at the edge or center [BHW09]. . 18

2.2. The modular structure of ACT-R. . . . . . . . . . . . . . . . . . . . . . . . 21

3.1. The Mindstorms class robot. It is equipped with a color, ultrasonic and

two touch sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2. The National Instruments’ LabView development system. . . . . . . . . . . 24

3.3. The driving system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4. The NXT sensor’s 6-position modular connector. . . . . . . . . . . . . . . . 26

3.5. Left: The touch sensor - Right: the structure it is linked to. . . . . . . . . 27

3.6. Left: The color sensor - Right: The ultrasonic sensor. . . . . . . . . . . . . 27

6.1. The local search algorithm implemented in ACT-R. . . . . . . . . . . . . . 49

6.2. Decision process for corridor, new and known junctions. . . . . . . . . . . . 53

8.1. Behavior of the model, showing a learning curve similar to the humans’

[BHW09]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.2. Left: Mean performance of the random walk in the four test environments

Right: Solution quality of the random walk strategy in the four environments. 75

8.3. Human (left) and model performance (right) with random walk, the curves

have a correlation of 0,962 and 0,954. . . . . . . . . . . . . . . . . . . . . . 76

8.4. The Gaussian error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

8.5. Gaussian perimeter strategy performance. Left: Human - Right: model. . . 78

8.6. Solution quality of the Gaussian perimeter strategy in the four environments. 79

3





Stefano Bennati Introduzione

Introduzione

La Robotica Cognitiva

La Robotica Cognitiva è una disciplina di recente introduzione ed in pieno sviluppo.

All’atto pratico è il punto d’incontro della Robotica tradizionale con le Scienze Cognitive,

due discipline per molti versi fra loro complementari.

Lo scopo della Robotica Cognitiva è quello di affiancare alla tecnica tradizionale della

Robotica le recenti soluzioni di controllo che le Scienze Cognitive offrono.

In particolare le Scienze Cognitive studiano il funzionamento del cervello umano ed i

processi di ragionamento: numerose teorie sono già state formulate e stumenti software

che le implementano sono già in fase avanzata.

La creazione di un sistema di controllo che funzioni come il cervello umano e che ne

replichi il ragionamento, permetterebbe ad un robot dotato di tale sistema di interagire

in modo più semplice e agevole con gli esseri umani.

Un’architettura cognitiva risulta, agli occhi di un essere umano, qualcosa di familiare e

di più semplice utilizzo. Al contrario gli attuali sistemi, anche i più avanzati, sono visti

dalla maggior parte degli utenti come dei meri sistemi meccanici, chiusi e statici, la cui

logica e comportamento sono distanti da quelli ideali.

Una delle architetture cognitive più riconosciute ed utilizzate è senza dubbio ACT-R.

ACT-R è stato creato e testato da centinaia di sviluppatori provenienti dalle Scienze

Cognitive, dalla Psicologia e dall’Intelligenza Artificiale. Questo Software è utilizzato

in numerosissimi ambiti da altrettanti centri di ricerca, e vanta all’attivo innumerevoli

esperimenti che hanno contribuito a confermare ed affinare la teoria che vi sta dietro.

Due importanti progetti legati ad ACT-R sono stati portati a termine dai US Navy’s

Naval Research Laboratories (NRL) e dal Massachusetts Institute of Technology (MIT).

Questi due centri di ricerca hanno portato avanti due differenti studi relativi alla

Robotica Cognitiva, il cui scopo era creare degli automi in grado di rapportarsi

agevolmente ed efficacemente con degli esseri umani, tramite comandi visivi e vocali.

I risultati sono stati importanti: i robot sono in grado di apprendere nozioni, sia tramite

osservazione di oggetti, sia tramite l’interazione con gli esseri umani.
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Per ottenere i risultati voluti, questa architettura è stata modificata ed ampliata dagli

studiosi statunitensi per meglio adattarla ai loro obiettivi. Inoltre la gestione del robot

è stata suddivisa fra questa ed altre architetture cognitive, meglio specializzate in alcuni

compiti particolari (es. ragionamento spaziale, fisico e temporale [ST+04]).

Il risultato di queste ricerche è stato molto importante ed innovativo, ma d’altro canto

molto complesso da realizzare e scarsamente documentato, a causa delle politiche di

sicurezza delle forze armate statunitensi.

I concetti

Il lettore potrebbe chiedersi: “se un lavoro cos̀ı completo già è stato portato a

compimento, qual è l’utilità di calcare un’altra volta quella strada?”

Proseguendo con la lettura diverrà evidente la sostanziale differenza fra il lavoro

brevemente descritto poco fa ed il lavoro presentato in questa tesi.

Le maggiori differenze sono due:

La più evidente è che il lavoro documentato da questa tesi non riguarda l’interazione

uomo-macchina, tratta invece un argomento che negli esperimenti prima citati è stato

trascurato: la navigazione.

Il robot realizzato dai NRL è in grado di navigare autonomamente, tuttavia per il

ragionamento utilizza principalmente algoritmi di Intelligenza Artificiale classica, e si

appoggia in minima parte all’architettura cognitiva Polyscheme [CC02].

La soluzione elaborata dall’MIT è invece un robot fisso, quindi non possiede alcun

algoritmo di navigazione.

La seconda differenza, la più importante, è il metodo realizzativo. Entrambi gli esempi

sopra citati utilizzano una complessa serie di sensori per una complessa serie di interazioni

con l’ambiente e le persone.

Per gestire questa complessità gli stumenti software esistenti non erano sufficienti ed è

stato necessario modificarli ed ampliarli con nuove funzionalità.

La forza di questo progetto sta nella semplicità di realizzazione.
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Gli obiettivi

Questo lavoro parte con l’obiettivo di mantenersi il più semplice possibile, in modo da

essere facilmente replicato, compreso ed adattato a nuove situazioni.

In particolare l’unica architettura cognitiva utilizzata è ACT-R, privo di qualsivoglia

modifica. Le uniche aggiunte riguardano l’introduzione di moduli per l’interfacciamento

con il robot che, grazie all’architettura modulare del software, non modificano neppure in

minima parte il cuore del sistema.

La stessa filosofia KISS 1 è stata anche alla base del progetto del robot: si è deciso di

utilizzare il minimo insieme di sensori sufficienti per la navigazione.

L’utilizzo di sensori più complicati, come una videocamera, avrebbe portato maggiore

complessità nella realizzazione e poco significativi miglioramenti alla qualità del software.

Lo scopo finale di questo lavoro è realizzare un agente robotico mobile in grado di

navigare all’interno di un labirinto alla ricerca di un obiettivo.

Il robot non possiede conoscenza pregressa dell’ambiente che gli sta attorno, quindi la

navigazione seguirà inizialmente una strategia indipendente dalla conformazione del

labirinto o dalla posizione dell’agente. Durante l’esplorazione il software memorizza

informazioni utili, come le decisioni prese ed il percorso compiuto. Una volta trovato

l’obiettivo il robot verrà ricollocato all’ingresso del labirinto e gli sarà nuovamente chiesto

di trovare l’obiettivo nella stessa posizione iniziale.

Grazie alle caratteristiche dell’architettura cognitiva ACT-R, l’algoritmo di navigazione

è in grado di imparare dall’esperienza, quindi col susseguirsi delle esplorazioni si

costruirà una rappresentazione interna dell’ambiente e sarà in grado di migliorare, di

volta in volta, le sue prestazioni.

1Keep It Simple, Stupid! http://catb.org/jargon/html/K/KISS-Principle.html
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L’architettura cognitiva ACT-R

ACT-R è un’architettura cognitiva, un framework che modellizza la struttura ed il

comportamento del cervello umano, cercando di spiegare come le varie aree della

corteccia cerebrale lavorino assieme e formino la mente umana.

ACT-R implementa una teoria avanzata che permette di simulare complicate

caratteristiche del cervello, come le variazioni BOLD (Blood-Oxygen-Level Dependance)

di molte zone cerebrali e l’apprendimento.

La teoria alla base di ACT-R parte da un presupposto fondamentale, cioè che la

conoscenza può essere divisa in due irriducibili tipi di rappresentazione:

memoria dichiarativa e memoria procedurale.

La memoria dichiarativa si riferisce a tutti quei ricordi che possono essere coscientemente

richiamati, per esempio nozioni o fatti memorizzati tramite studio o esperienza.

La memoria procedurale invece, memorizza sequenze di azioni che portano ad un

obiettivo. L’uomo le può apprendere dopo una lunga serie di ripetizioni.

Un chiaro esempio di come funziona la memoria procedurale lo si ritrova nello scrivere

a macchina: gli esperti battitori sono in grado di scrivere a macchina senza guardare la

tastiera, l’esperienza acquisita li porta a ricordare la posizione delle lettere sulla tastiera e

a poter digitare in automatico. Tuttavia queste persone non sono in grado, se interrogate,

di ricordare la posizione esatta di ciascun tasto.

La conoscenza della posizione delle lettere sulla tastiera non può essere richiamata

coscientemente ma permette di raggiungere l’obiettivo di scrivere a macchina

concentrandosi sul testo, senza dover prestare attenzione ai movimenti delle dita.

La conoscenza dichiarativa è rappresentata in ACT-R tramite chunk : strutture dati

che contengono informazioni legate a specifici fatti o ricordi.

La conoscenza procedurale è rappresentata tramite produzioni : equivalenti alle

funzioni nei linguaggi di programmazione, queste contengono sequenze di azioni

che producono determinati effetti e che possono essere attivate solo nel caso in cui

determinate precondizioni siano soddisfatte.

Il framework ACT-R è suddiviso in moduli, ciascuno dei quali rappresenta una o più

funzioni del cervello e quindi una specifica zona della corteccia cerebrale.

Il modulo procedurale è la parte centrale di questa architettura e si occupa di coordinare

tutti gli altri moduli e lo scambio di informazioni fra loro.

La struttura modulare di ACT-R permette ad un programmatore di estendere la

teoria che sta dietro ad ACT-R scrivendo un nuovo modulo ed aggiungendolo senza sforzi

all’architettura cognitiva.
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Ciascun modulo è indipendente dagli altri e comunica con loro tramite uno scambio di

chunk, attraverso i buffer.

Ogni modulo possiede almeno un buffer, che forma la sua interfaccia verso gli altri moduli.

Un buffer può contenere un solo chunk alla volta: questo può essere generato dal modulo

stesso e contenere le informazioni che vuole inviare agli altri moduli, oppure può essere

stato creato da una produzione e contenere una richiesta per il modulo a cui appartiene.

In ogni momento solo una produzione per volta può essere avviata.

Perché quella specifica produzione sia avviabile occorre che le sue precondizioni, composte

dallo stato dei buffer in quel momento, siano soddisfatte; non solo, essa deve presentare

la maggiore utilità fra tutte le produzioni contemporaneamente avviabili.

Il valore di utilità è calcolato, per ciascuna produzione, sulla base di diversi parametri

come la probabilità stimata di raggiungere il goal attraverso questa azione, il valore attuale

del goal e il tempo stimato necessario a raggiungerlo.

Questo meccanismo di utilità è alla base del sistema di apprendimento di ACT-R:

quanto più successo ha una produzione, tanto più cresce la stima della sua probabilità di

raggiungere il goal, quindi la sua utilità.

Le produzioni che hanno più successo verranno scelte più frequentemente.

ACT-R è scritto in LISP e offre un linguaggio di modellazione simile al LISP tramite

il quale scrivere modelli.

I modelli sono il mezzo tramite il quale un ricercatore può programmare ACT-R: ogni

modello rappresenta un compito e specifica l’idea che il ricercatore ha riguardo i processi

cognitivi che stanno dietro a quel compito.
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La realizzazione

Per permettere all’architettura cognitiva ACT-R di collegarsi al robot e di controllarlo,

è stato necessario scrivere un livello software di interfaccia.

Per il controllo del robot è stata scelta una libreria [Hir07] , scritta in LISP, che ha ridotto

di molto la quantità e la complessità del lavoro.

Potendo contare su di un substrato di basso livello scritto nello stesso linguaggio di

programmazione in cui anche i livelli superiori sono implementati, il lavoro per

interfacciarli è stato relativamente semplice.

Come già accennato, la struttura modulare di ACT-R permette di espanderne le capacità

in modo facile e pulito, semplicemente aggiungendo nuovi moduli. Ciascun modulo

interfaccia un particolare tipo di sensore con il cuore dell’architettura cognitiva,

mettendo a disposizione del modellatore le risorse necessarie per utilizzarlo.

In particolare le interazioni fra il modello ed i sensori sono basate sullo scambio di chunk,

la struttura dati base di ACT-R, attraverso i buffer appartenenti ai diversi moduli.

Completata l’interfaccia si è proceduto a verificare la sua operatività tramite un

programma di test che implementasse, nella sua più classica e deterministica forma,

la strategia del perimetro.

Una volta constatata la bontà dell’interfaccia si è proceduto alla scrittura di un simulatore

che permettesse al modello di navigare all’interno di labirinti virtuali.

I vantaggi di avere un simulatore sono innanzitutto la grande velocità di esecuzione e la

flessibilità provenienti da un ambiente virtuale, che permette la programmazione “batch”

e di raccogliere in breve tempo grandi quantità di dati; inoltre è facile apportare ingenti

modifiche al labirinto in brevissimo tempo, il che ha permesso di testare il funzionamento

del modello su numerosissimi labirinti di prova, molto diversi gli uni dagli altri.

Infine i test risultano molto più affidabili in quanto, all’interno di un ambiente virtuale, non

si presentano errori di odometria o di misurazione che sono fisiologici per gli esperimenti

nel mondo reale.

La realizzazione del modello vero e proprio ha richiesto la maggior parte del tempo:

numerose versioni del modello sono state testate ed innumerevoli problemi corretti.

L’idea iniziale è stata quella di dare all’algoritmo differenti strategie d’esplorazione fra cui

scegliere, e lasciare decidere all’esperienza quale fosse la strategia più performante.

Questo sistema si basa su una serie di “ricompense” associate a differenti produzioni

(ossia azioni che il modello può compiere): più alta è la ricompensa associata ad una

produzione, più alta è la possibilità che questa produzione venga in futuro riutilizzata.

Questo meccanismo di selezione è chiamato Utility Learning ed è fornito da ACT-R stesso.
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Questo sistema si è dimostrato in grado di imparare, tuttavia numerosi problemi hanno

pregiudicato la sua bontà:

per quanto il modello fosse in grado di capire se la strategia del perimetro verso destra

fosse migliore, per esempio, di un random walk, questo sistema non è affatto flessibile.

Si pensi al caso particolare in cui il percorso ottimo verso l’obiettivo si componga di N

deviazioni a destra e, per ultima, di una deviazione a sinistra: il modello cos̀ı realizzato

non sarà mai in grado di accorgersi che la soluzione migliore implica curvare a sinistra

all’ultimo bivio; esso continuerà a girare a destra, anche nel caso in cui questo comporti

una penalità notevole.

Ancora più problematico è il caso di un random walk: essendo per definizione casuale,

capiterà sempre il caso in cui la strada intrapresa sia più lunga di quella strada percorsa

utilizzando la strategia del perimetro.

Ne risulta una situazione d’instabilità, e la possibilità che la strategia del perimetro venga

scelta anche se, nel caso medio, peggiore.

Da queste considerazioni la decisione di provare un approccio totalmente nuovo:

cambiare prospettiva, passando dalle ricompense applicate alle produzioni alle

ricompense applicate agli stati: sicché invece di privilegiare genericamente un azione è

consigliabile, per ogni stato, dare un valore alle prestazioni di ciascuna.

È stata introdotta una nuova struttura dati, che rappresenta gli incroci del labirinto.

Ogni incrocio si differenzia per la lunghezza e la posizione dei corridoi che vi conducono.

Per ciascun incrocio si sono memorizzate le prestazioni di ciascuna direzione.

Tramite questi valori è possibile stabilire, per ogni incrocio, quale sia l’azione più

consigliabile da eseguire. Le prestazioni vengono valutate da un’apposita funzione che

viene invocata ogni volta che si giunge all’obiettivo. La funzione implementa la routine

Policy-Iteration [RN03, p.624], che consiste nell’aggiornamento delle prestazioni di tutti

gli stati incontrati nell’esecuzione attuale.

Le prestazioni di ciascuno stato sono calcolate come la differenza fra il tempo a cui

l’obiettivo è stato ritrovato ed il tempo a cui lo stato venne selezionato l’ultima volta;

nel caso in cui questo valore sia migliore del precedente, esso viene aggiornato.

Questa routine garantisce che l’algoritmo si stabilizzi ad una soluzione sub-ottima entro

un limite di tempo finito.

Questo approccio si è dimostrato molto più soddisfacente del precedente, ed ha permesso

di affinare di molto il controllo nella navigazione: grazie a questo sistema è possibile

riconoscere e marcare i vicoli ciechi in modo da escluderli da future esplorazioni.

Nel caso estremo il modello è in grado di potare un intero ramo del labirinto, escludendo

dalle future scelte uno o più incroci.
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In modo simile è possibile riconoscere una strada che è già stata percorsa e prendere

provvedimenti in modo da interrompere il ciclo che si è venuto a creare.

Un ultimo passo è consistito nell’integrare nel modello il lavoro svolto da un altro gruppo

di ricerca, relativo ad un esperimento piuttosto simile: quel progetto ha implementato un

sistema per il calcolo di distanze fra punti di riferimento all’interno di un labirinto.

Il modello naviga nel labirinto, utilizzando un sistema di navigazione molto semplice,

ed è in grado di riconoscere alcuni punti di riferimento sparsi per il percorso.

Per ciascun punto memorizza la distanza in passi dal punto di partenza, e calcola la

distanza relativa fra quel punto d’interesse ed il precedente.

Alla fine dell’esplorazione il modello calcola, per via indiretta, la distanza fra ciascuna

coppia di punti. Durante questo procedimento si possono verificare degli errori di calcolo

dovuti alla “somiglianza” fra chunk.

La funzione di similarity è una funzionalità di ACT-R che permette di definire, per

una coppia di chunk, una valore di somiglianza che porta ad una più alta probabilità

di confondere i chunk durante il recupero dalla memoria. Questo sistema riproduce il

comportamento degli esseri umani, quando richiesto loro di svolgere lo stesso compito.

Il modello sopra descritto è stato integrato in questo lavoro utilizzando gli incroci come

punti di riferimento.

Il modello è quindi in grado di navigare in un labirinto, sfruttando il migliore algoritmo

di navigazione sviluppato in questo progetto, ed una volta trovato il goal, calcolare la

distanza fra ciascuna coppia di incroci incontrati durante l’esplorazione.
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La valutazione

Una volta completato il modello, si è proceduto a valutarne le prestazioni tramite

una serie di test effettuati in differenti labirinti virtuali, ed estrapolarne una statistica

da confrontare con dati di riferimento. Questo riferimento proviene da esperimenti dello

stesso tipo, compiuti su soggetti umani, svolti per mezzo di un sistema di realtà virtuale

che mette in grado l’utente di navigare all’interno di un labirinto tridimensionale.

Nel nuovo esperimento sono stati riutilizzati gli stessi labirinti di prova adoperati nelle

prime esperienze, grazie al simulatore è stato sufficiente costruire dei nuovi labirinti

virtuali che ne replicassero le caratteristiche.

Per ciascun labirinto sono state simulate diverse sessioni, al termine di un tempo

massimo la sessione è interrotta, le informazioni importanti salvate ed avviata una nuova.

All’inizio di ogni sessione, l’agente non ha alcuna conoscenza dell’ambiente ed inizia una

fase esplorativa applicando una strategia predefinita. Sono state testate diverse strategie

d’esplorazione, e le loro prestazioni sono state messe in relazione alla conformazione di

ciascun labirinto. Da questi risultati è apparso che alcune strategie funzionano meglio

per alcune classi di labirinti. Terminata la fase esplorativa, con l’individuazione del goal,

l’agente viene riposizionato all’ingresso e cerca nuovamente di raggiungere l’obiettivo, che

si trova ancora nella stessa posizione, sfruttando l’esperienza accumulata all’interno della

sessione corrente per migliorare le sue prestazioni.

Il confronto fra le statistiche del vecchio e del nuovo esperimento ha mostrato

significativi punti di contatto. L’agente, allo stesso modo dell’essere umano, impara dalla

propria esperienza: sceglie la strada più veloce che conosce per raggiungere il goal, non

ritorna sui suoi passi ed evita i vicoli ciechi. Si è inoltre visto che utilizzando la strategia

d’esplorazione chiamata “del perimetro”, che consiste nel seguire il muro destro del

labirinto ed è risultata la più utilizzata dall’uomo, le prestazioni della prima esecuzione

sono pressoché identiche a quelle registrate con i soggetti umani.

Le prestazioni finali, ovverosia alla stabilizzazione dell’algoritmo presso una soluzione

subottima, sono a volte migliori di un ordine di grandezza rispetto a quelle umane.

Questo miglioramento è dovuto alla differente strategia d’esplorazione, rispetto ai soggetti

umani, adottata dal modello nelle successive esecuzioni: mentre gli umani preferiscono

seguire una strada conosciuta e sicura, un agente robotico non ha paura di perdersi nel

labirinto e quindi continua l’esplorazione alla ricerca di un percorso più veloce.

Per questo motivo, spesso la seconda esecuzione mostra prestazioni molto peggiori rispetto

a quelle umane. Questo comportamento ha però il vantaggio di ampliare la conoscenza

dell’ambiente e di portare quindi a trovare una soluzione migliore.
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Conclusioni

La valutazione ha dimostrato che il modello è valido e riproduce con buona fedeltà

il comportamento umano; che inoltre esso è in grado di imparare e, tramite la grande

iniziativa che dimostra, in grado di avere prestazioni mediamente migliori di quelle umane.

Il difetto di questa implementazione è la necessità, per poter funzionare correttamente,

di un ambiente molto particolare e con regole costruttive rigide.

Queste limitazioni si potrebbero risolvere dotando il robot di sensori più sofisticati.

Significativo è che il modello cos̀ı costruito è totalmente indipendente dal tipo di sensori,

quindi sarebbe teoricamente possibile implementare questo cambiamento senza apportare

alcuna modifica al modello vero e proprio.
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1. Abstract

Cognitive robotics is a fascinating field in its own right and comprises both key features

of autonomicity and cognitive skills like learning behavior.

Cognitive Robotics aims at endowing the robot with intelligent behavior. An important

property of a cognitive robot is the ability to learn and to behave in a complex scenario.

This is typically achieved by a cognitive architecture, which aims at mirroring human

memory and assumptions about mental processes. One of the most widely recognized

cognitive architectures is ACT-R, developed and tested by hundreds of researchers from

Cognitive Science, Psychology, and AI [Act].

The major aspect of the proposed master thesis will consist of the analysis of necessary

(pre-) conditions and subsequent implementation of the cognitive architecture ACT-R

for mobile robots’ control. The task of the robot will be to operate in an unknown

environment, to search for a specific object and to execute specific operations depending

on different objects. Towards this goal the robot must be able to explore space and, as it

is a cognitive robot, to show learning behavior as provided by the cognitive architecture

ACT-R. Especially, production rule compilation may provide a fruitful method.

In short, the robot must be able to:

• Explore (partially) unknown environment and search for a specific object of

unknown position.

• Reach an object of known position, with or without any previous knowledge of the

environment. The robot must be able to execute specific exploration strategies from

AI or Cognitive Science (e.g. [RN03]).

• Show learning behavior. Possible test scenarios are the mazes used to investigate

learning in rats [Tol48].

The robot will be built using as hardware a custom made Lego Mindstorms [Leg] and as

software the ACT-R cognitive architecture. The Lego Mindstorms Robot has been used

in several universities (e.g., MIT [KN00], RWTH, and numerous others). The software

will be written using the LISP programming language.
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2. Introduction

From the early beginning of robotics one line of research has tried to bring human

cognition and robotics closer together [BBM+99].

Nowadays, technological progress in the field of robotics and the development of

cognitive architectures allows for a leap forward: A robot able to navigate an environment,

with the ability to learn and a human-like attention shift.

This new and exciting field is sometimes referred to as Cognitive Robotics [CG99].

This combination of two fields leads to a number of important research questions:

What are the immediate advantages of cognitive robotics (a term we will use in the

following for a robot controlled by a cognitive architecture) over classical robotics?

Is the cognitive architecture (which is partially able to simulate human learning

processes) restricting or improving navigation skills?

In cognitive science new research focuses on embodied cognition.

Embodied cognition claims that understanding (especially of spatial problems)

is derived from the environment [And03].

In other words, cognition is not independent of its physical realization.

Taking as example the two labyrinths in Fig. 2.1, what are the minimal sensors necessary

to navigate successfully through them?

The study described in [BHW09] used a virtual reality environment. Participants had

to navigate through a labyrinth in the ego-perspective and find an initially specified goal

(red dot). The study identified recurrent navigation strategies (which we will introduce

later) used by the subjects.

Modeling navigation tasks, for instance in labyrinths, still poses a challenge for cognitive

architectures: Although those architectures can model decision processes they typically

abstract from metrical details of the world, from sensor-input, and from the integration

processes of environmental input to actions (like move operations). Robotics, on the other

hand, has captured all of these aspects, but does not necessarily make use of human-like

learning and reasoning processes or even try to explain human errors or strategies.

Compared to humans a robotic agent has limited perceptions and capabilities.
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Figure 2.1.: Left: An example of a test labyrinth. Right: Layouts of two mazes: The task is
to find the target object (red dot) at the edge or center [BHW09].

On the other hand, it can teach us something about the relevant perceptions that

are already sufficient for the robotic agent to perform successfully. For instance, in the

navigation task above (e.g., cf. Fig. 2.1), the distance from the wall (in the direction the

robot is facing) and the color of the floor the robot is placed on are sufficient.

Much research is being done in the field of cognitive robotics; some prototypes of

cognitive robots have already been built 1.

This research concentrates on the human-robot and robot-environment interaction,

allowing the robots to recognize and interact with objects and people through their visual

and auditory modules [ST+04]. The architecture proposed contains Path Planning and

Navigation routines based on the Vector Field Histogram [BK91] that allow the robot to

navigate avoiding obstacles and explore the environment.

Unlike the architecture proposed, the objective of this paper is to implement a

Cognitive Navigation System, which is completely based on ACT-R and takes

advantage of its cognitive features such as Utility Learning, that allows

Reinforcement Learning [RN03, p.771] on productions.

No software other than ACT-R will be used to control the robot.

The previous experiment has the merit of having taken the first steps towards interfacing

ACT-R with a mobile robot, but the data is still incomplete and tries to combine as many

different abilities as possible (from natural language processing, to parallel computing)

in a manner that is likely more complex than necessary.

1e.g., Cognitive Robotics with the architecture ACT-R/E http://www.nrl.navy.mil/aic/iss/aas/

CognitiveRobots.php
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Our approach starts at the other end, taking only the aspects and sensor data into account

that are necessary to perform the task – the most simple robot.

Other research studied the possibility of interfacing ACT-R with a robot and giving

it direct control over the robot’s actions. That effort produced an extension of ACT-R

called ACT-R/E(mbodied) [Tra09, HT10]. ACT-R/E contains some new modules

that act as an interface between the cognitive model and the Mobile-Dexterous-Social

(MDS) robot [BSB+08], allowing it to perceive the physical world through a video camera.

However, no navigation was investigated, as the robot did not navigate an environment.

In both this and our implementation ACT-R has been extended. The vast difference

between the two is the smaller amount of changes made to the standard ACT-R by our

implementation, due to the sensors’ higher complexity in the MDS.

2.1. Act-R

ACT-R is a cognitive architecture, a framework that models the structure and behavior

of the human brain. This architecture tries to explain how all the brain’s components

collaborate and work together and form the human mind. The theory behind ACT-R is

an unified theory and integrated system that tries to explain the overall behavior of the

human mind through connections between its well-defined components.

The quote below comes from Allen Newell, the man whose work inspired J.R. Anderson

in creating ACT-R, and explains the meaning of an integrated system.

A single system (mind) produces all aspects of behavior. It is one mind

that minds them all. Even if the mind has parts, modules, components, or

whatever, they all mesh together to produce behavior. Any bit of behavior

has causal tendrils that extend back through large parts of the total cognitive

system before grounding in the environmental situation of some earlier times.

If a theory covers only one part or component, it flirts with trouble from the

start. It goes without saying that there are dissociations, independencies,

impenetrabilities, and modularities. These all help to break the web of each

bit of behavior being shaped by an unlimited set of antecedents. So they

are important to understand and help to make that theory simple enough to

use. But they do not remove the necessity of a theory that provides the total

picture and explains the role of the parts and why they exist.
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ACT-R not only offers a complete implementation of the theory, but also advanced

features like automatic learning and quantitative predictions of the brain’s behavior

and activation. Many experiments with Functional Magnetic Resonance Imaging (fMRI)

demonstrated that ACT-R can predict the Blood-Oxygen-Level Dependence (BOLD)

response of several parts of the brain.

The main assumption of the theory behind ACT-R is that human knowledge can be

divided into two irreducible kinds of representations: declarative and procedural.

Declarative memory refers to all the memories that can be consciously recalled,

for example knowledge and facts memorized through experience, while procedural

memory stores the information relative to how to do things: After repeating a sequence

of actions that leads to a goal numerous times, this sequence is unified and memorized

into the procedural memory. The next time the goal needs to be reached that knowledge

will be retrieved and the actions done automatically, without the need to concentrate on

what to do next.

A typical example that explains these two types of memory is the typewriter example.

An expert in typewriting can type a text without looking at the keyboard; he knows the

position of all the letters on the keyboard and can unconsciously access this information

and touch type. The same expert, if questioned about the position of a defined letter on

the keyboard, will have trouble in answering without looking at it.

The knowledge of the letters’ position cannot be accessed consciously, in fact the process of

typing is done automatically, without need of concentrating on the task. This knowledge

is stored in the procedural memory: it does not contain a piece of information but the

action (which finger and where to move it) needed to reach the goal of typing a letter.

Declarative knowledge is represented in the ACT-R’s theory by chunks : data structures

in the shape of a n-tuple of arbitrary size that contain information related to a specific

fact or memory. A chunk is characterized by its chunk-type, that defines each tuple as a

list of two elements: the first identifies the slot and the second its value.

Procedural knowledge is represented by productions, which are the equivalent of functions

in ACT-R and contain a sequence of actions and operations on buffers, which produce

determined effects and can take place only if determined preconditions are satisfied.

The ACT-R is a framework, structured in modules (as shown in Fig. 2.2), each module

represents one or more than one function of the brain.

The visual module represents the visual cortex and is responsible for identifying the objects

in the visual scene and shifting the attention on to them; the motor module controls the

virtual hands, like the vocal module controls the voice, and can perform actions like

pressing a button or moving the mouse.
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Figure 2.2.: The modular structure of ACT-R.

The brain’s neural functions are localized: all the neurons that perform similar tasks

are close together, for tha sake of ease in communication between neurons.

This implies that if each function is controlled by a determined brain region, each module

must represent one of the brain’s regions as well. The procedural module is the central

part of the architecture and is responsible for the coordination of all the other modules.

It controls the whole system through the exchange of information between the buffers.

Each module is independent from the others; modules do not share variables or

information. Each module can communicate with the others through the use of buffers,

which are its interface towards the other modules. A module can have no buffers.

A module can read chunks from every buffer, but it is supposed to make changes only

to the chunks in its own buffers. This typically happens when the module responds to a

query or a request, creating of a new chunk in its buffer.

The processes inside the modules are parallelized; for example the visual module can

keep track of many objects in the visual scene and the declarative module looks for a

match between a huge number of records. The interaction between modules is, instead,

strictly serial. There are two main reasons that cause this bottleneck:

The first reason is that each buffer can contain, in a specified moment, only one chunk.

To store a new chunk in a buffer the previous one must be deleted, so for every cycle it is

possible to read only one piece of information.

The second reason is due to the procedural system. For every cycle several productions

could have the preconditions to be selected and fired by the procedural module.
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In reality, because of the seriation in production execution, only one production can

be fired at a time. The production to be selected is the one with higher utility value.

This value is calculated, for every production, on the basis of several parameters such as

the estimated probability of reaching the goal, its current value and the estimated time

needed to achieve it. Those values are at the base of the learning mechanism embedded

in ACT-R: the more successfully a production is, the more its estimated probability and

so its utility grow, increasing the probability for that production to be selected again.

ACT-R is written in Lisp, and offers its own lisp-like language. Its modular structure

allows the developer to write his own modules and add them effortlessly to the framework.

The high flexibility of the framework makes it easy to extend the theory behind it.

A researcher can program the framework by writing models; each model represents one

task and specifies the idea that the modeler has about the cognition behind that task.

A model contains several productions that interact with the modules, querying them and

reading their buffers.

2.2. The objective

The final objective of this work is to control a robot through ACT-R. To reach this

goal an interface must first be written through ACT-R and the robot. This interface will

be responsible for translating the commands in the model into lisp instructions.

The second step will consist of writing a model that will allow the robot to show

human-like behavior while navigating through a labyrinth and searching for a goal,

e.g., an exit from the maze.

For human-like behavior we mean the ability of creating a mental representation of the

environment and adapting it to the new information that comes from the exploration.

The model should also be able to learn from the experience and improve, run after run,

its performance in finding the solution. Some reasoning should also be shown by the

navigation algorithm, for example the ability to recognize a undesired situation, like a

dead-end or a loop, and avoid it.

The model is going to be tested in several situations and its performance will be

compared with the data from [BHW09], relative to an equivalent experiment previously

done with humans subjects. The results of the two experiments should be somehow

related and should show some point of contact that will prove the validity of the model

in simulating the human behavior.
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3. Robot

Figure 3.1.: The Mindstorms class robot. It is equipped with a color, ultrasonic and two touch
sensors.

Our device of choice is a standard Mindstorms 1 class robot (cf. Fig. 3.1).

It consists of a central “brick” that contains the CPU and the batteries,

it also features a small speaker, through which the robot can play some audio files,

a microphone and a small display that reports the state of the robot and can be also used to

navigate in the menus, through four directional buttons, or to visualize some graphics.

This brick was designed in collaboration with the MIT.

At this core component several peripherals can be attached: it supports up to three

step-to-step engines and up to four sensors. The robot is sold in a box that contains

LEGO bricks, some sensors and the programming software.

The included software allows the user to program the robot with a graphical and easy to

1This type of robot is produced by The Lego Group
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use interface: the programming consists of linking a series of virtual bricks together to

create the desired behavior. Each brick represent an abstract entity, for example a logical

port, a loop with condition, a sensor, the display, an engine, etc.

Figure 3.2.: The National Instruments’ LabView development system.

The bricks have some properties that allows the programmer to set some parameters

(e.g input values) and some output values can communicate some values to the next bricks

in the sequence.

Such a programming IDE is a great tool to teach kids to program, but for our goals it is

not sufficient.

The community developed many substitutes of this tool, that install a new firmware

in the robot and allow the programmer to write its code in a programming language

of common use. The most popular are the Java environment leJOS 2 and the C++

environment RobotC 3.

2leJOS: Java for LEGO Mindstorms http://lejos.sourceforge.net/
3RobotC: a C programming language for Robotics http://www.robotc.net/
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3.1. Chassis design.

The chassis is the structure to which the central brick, the motors and the sensors are

attached.

Our robot has a custom chassis based on the standard chassis proposed by

The Lego Company for the use with the Mindstorms robot. The base design has been

modified to room all the needed sensors and to respond to some design choices.

For example, instead of the suggested configuration with two caterpillar tracks, three

wheels compose the robot’s locomotion system (as seen in Fig. 3.3). Tracks are useful

for off-road operations because avoid skidding, but in an indoor environment wheels are

an appropriate choice. The use of two independent driving wheels helps decreasing the

odometry errors, thanks to the smaller friction that the rubber wheel produce on the

paper floor compared to the tracks.

Figure 3.3.: The driving system.

A third central fixed idle wheel, placed on the back of the chassis, allows the robot to

keep its balance.

The structure resembles a differential drive robot, with the exception that the third wheel

cannot pivot. This compromise works well with the expedient of removing the tyre from

the back wheel. The small friction between the floor surface and a small portion of the

plastic wheel does not produce much of a friction and allows the robot to turn without

too many difficulties.
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3.2. Sensors.

A robot can be equipped with several kinds of sensors: from a simple sound or light

sensor, to more complex ones like a compass or webcam. In addition to the standard

sensors produced by LEGO, there are on the market several advanced sensors produced

by third parties that are fully compatible with the NXT brick.

Figure 3.4.: The NXT sensor’s 6-position modular connector.

Every sensor has the same physical interface towards the central brick (Fig. 3.4), this

interface includes both an analogic and a digital communication channel, besides that the

power supply. Thanks to this universal interface the sensors are interchangeable and can

be attached to any port.

The engines have, on the other hand, three dedicated ports.
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Following the modular approach of ACT-R, we decided to start bottom-up, using only

the most necessary sensors to perform adequately. Our design makes only use of the most

basic sensors:

Figure 3.5.: Left: The touch sensor - Right: the structure it is linked to.

Two touch sensors (Fig. 3.5), they are nothing more than a switch that is activated

every time that its top part is pressed. It has been used to have short range perceptions,

as a security device that stops the movement when the robot hurts a wall.

Each touch sensor is placed on one side of the chassis and is linked to a mobile structure

that covers the front of the robot on that side. When this structure hits an obstacle the

sensor is activated. This allows it to identify obstacles within a range of 0 to 80 degrees,

on both sides.

Figure 3.6.: Left: The color sensor - Right: The ultrasonic sensor.
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A color sensor (Fig. 3.6 Left) that is composed by three LED forming a RGB light

that can produce monochromatic light or white light, which is used to illuminate

the target, and by a light sensor that measures the light intensity.

It is placed on the front part of the chassis and looks at the floor just in front of the robot.

It has been used to read the floor’s color, whose variation identify an obstacle nearby.

The sensor has two modes of operation:

• Black and White: The LED produces a monochromatic light that is used to

illuminate the environment. The sensor reads the light intensity and gives as output

a numerical value between 0 and 1023.

• Color: The LED produces a white light and the sensor reads the color of the reflexed

light. In this mode of operations the sensor can discriminate between six tonalities

of color. To work properly the sensor must form a right angle with the target and

be not more that three centimeters far away.

An ultrasonic sensor (Fig. 3.6 Right), placed on the top of the chassis, measures the

distance between the robot and the next obstacle in front of it. The sensor cannot pivot,

so the robot must turn itself to measure the distance in a different direction.

It consists of a speaker that emits ultrasounds and a microphone that receives them.

The sensor compute the distance to the next obstacle applying a proportion on difference

between the time at which the ultrasound has been sent and the time at which its echo

has been received. The operational range goes from about 5 to 230 centimeters, with a

declared precision of 3 centimeters.

Those last two sensors give the robot long-range perception, allowing it to obtain

information about a part of the environment different from the point it is placed in that

very moment.

On the back there are no sensors. This choice works in the hypothesis that the robot

does not move backwards.
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4. Environment

4.1. The Perceptions

Given the sensors described in the previous chapter, the agent is capable of having

perceptions about the environment it is placed in.

Through those perceptions the agent can obtain some kind of information about some

characteristics of the surrounding environment. The robot can realize, through a query

to its touch sensors, if it is touching a wall. The sensors give information only about the

front of the robot, while they cannot tell if the side is scraping against a wall.

The color sensor is able to recognize landmarks nearby. The landmarks are marked with

a stripe of colored paper surrounding them, whose color the sensor decodes.

The sensor can discriminate between 6 tonalities of color, from white to black:

White is used to identify a clear way, with no landmarks in sight the robot will

keep going forward. This color has been chosen because it assures the less possible

degree of error: to read white, the sensor must be in a ideal situation (good

brightness, perfectly white surface at less than 3 centimeters from the sensor).

When a reading error happens the sensor can only report a darker tonality, in

that case the algorithm will stop, preventing dangerous situations to occur.

Blue is the last color before black, it has been chosen for representing a wall.

This color assures the highest contrast possible, making at least likely to happen,

because of a reading error, that the sensor reports erroneously a wall instead of

a clear way.

Red identifies the goal. It is in the middle between white and blue and so it

assures the highest possible contrast and the smallest chance of error.

Yellow identifies a junction. This color can be easily mistaken with White (even

if the empirical experience proved that the most reading errors report the color

Green) but that is not a major problem: the behavior programmed in response

to Yellow don’t involve possibly dangerous actions, and can recognize and handle

such a reading error. This behavior will be deeply explained in the next chapters.
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The ultrasonic sensor is used for long range perception, it measures the distance to the

object that, typically, is the next wall. This feature is used to measure the length of the

corridors that branch off a junction.

Given that set of perceptions, the agent must recognize and avoid obstacles in order to

explore the environment, and take good decisions when it encounters a junction.

It is important to keep in mind that the robot has no a priori knowledge of the

environment it is operating in. At the beginning the agent has no knowledge at all

about it, the only information about the environment is the embedded knowledge of how

it looks like: of what color are the walls, the goal and the junctions, how a junction is

formed, etc.

4.2. The labyrinth

We decided to test the cognitive robot on a custom self-built labyrinth.

To permit the robot to have the perceptions described above, the environment has been

build following some criteria that make errors less likely to happen (e.g., cf. Fig. 2.1).

The Labyrinth is built using cardboard, a material that is easy to find and manipulate.

This solution permit rapid changes in the labyrinth’s design.

The walls are taller than the robot and thick enough to resist an impact. That allows the

ultrasonic sensor to read the distance from the wall and also to put up enough resistance

and let the touch sensors operate.

The floor is covered in white paper. Paper is a good surface for odometry purposes and

the white color is not common in a normal environment, this forces the model to work

only when it is inside the labyrinth.

Blue paper, for a length of about 5 cm, is glued on the floor around the walls. When

the robot is approaching a wall its color sensor will find the blue paper some seconds in

advance of actually hurting the wall. The color sensor will recognize that change and

report the danger to the navigation system, that will act to avoid the collision.
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4.3. Properties of the environment

Before going forward we should define in a clear way the properties of the environment.

The classification of the properties is taken from [RN03, p.41].

• The environment is static, so it does not change during the execution. Information

about the surroundings is obtained by the agent through its sensors, as perceptions.

Those perceptions stay valid for the whole execution.

• The environment is although partially observable, in fact the sensors cannot inform

the agent about its orientation. The absolute orientation is anyways not necessary

to navigate, is enough for the agent to know what is its orientation in relation to

the environment. To compensate for this, the agent assumes to be observing north

at the start of the exploration, and keeping track of the changes of its orientation

in its internal state.

• Since the robot operates and moves freely into real space, the environment is to be

considered continuous. A natural consequence of this characteristic is the presence

of uncertainty and errors in perceptions.

• Because of this uncertainty the environment may appear stochastic to the agent.

• The tasks in this environment are sequential, that means that each action taken

might have consequences on future decisions. This consideration is straightforward

from the task of exploration: the agent cannot decide to move to an arbitrary place

in the environment but is compelled to move from one position to the one physically

next to it. Choosing a direction compared to another one excludes automatically a

whole set of possible states, that could be accessed by choosing the other direction.

• Concluding, the environment is safely explorable: The agent can freely explore the

environment without the risk of coming into a state that comports a loss. A more

formal way to say that is that the goal can be reached from any possible state.

Such an environment determines that new information can be only obtained, through

perceptions, after performing an action. Collecting of new information is subordinate to

acting. This situation is a classical example of contingency problem [RN03, p.86].

For this class of problems the solution takes the form of a tree, whose branches identifies

the possible alternatives that can be chosen depending on the received perceptions.

Each branch is associated with a condition that must be met in order to select it.

31



Stefano Bennati 4. Environment

One example of this structure is a state in which the action of turning right can be

performed only if the perceptions tell that there is no wall on that side.

Every branch has also a probability associated to it, in case more than one action can be

performed from the same state this probability will be different from one and reflect the

chance of the action to happen.

To reach the goal, the algorithm must solve an exploration problem. In this kind of

problem the agent does not know what are the states and to what results its actions

could bring to.

The way to solve such a problem is to observe what effects the actions bring and use

that observation to decide what to do next. This execution, that interleaves an execution

phase with an decision phase, is called Online Search [RN03, p.122].
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5. Interface

The first step towards a cognitive robot is to create a working interface between the

ACT-R framework and the NXT platform. This interface allows an ACT-R model to

control the robot and to receive sensor inputs from the robot. Due to the modular

structure of ACT-R, this interface is composed by several modules with different functions.

5.1. Low level lisp function.

On the basis of these modules there is a library 1 that provides low-level lisp functions

to execute simple tasks like interrogate a sensor or activate a motor.

The capabilities of this library are the following:

• It can read information about the environment from the light sensor, the distance

sensor and the touch sensor.

• It can make the robot perform some actions, like move its motors, turn on and off

the light and play some sounds.

• It can also check the robot’s internal state, querying the battery or the motors about

their states.

The library did not have the support for the color sensor, so it has been extended to

support that sensor, necessary for our purposes, as well. The lisp library has been bundled

in the code and its functions are called by these modules to control the robot.

1NXT-LSP: the NXT Controller in Lisp, developed by Tasuku Hiraishi http://super.para.media.
kyoto-u.ac.jp/~tasuku/index-e.html
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5.2. Module definition

The modules have a common structure. This is a standard module definition.

(define-module-fct ’name

’((buffer nil nil (query1 query2) nil))

(parameters))

Every module has an unique name, needed for its identification, it is the first parameter

in the define-module-fct function. A module can have zero or more buffers, which are

used to communicate with other modules though an exchange of chunks, whose names

are written in a list in the second parameter.

If one of those elements names a list, not only the name but also the default values

for the buffer’s components are specified. The list can be up to five elements long, only

the few that were useful for our purpose are going to be briefly handled, for a complete

reference see the ACT-R Reference Manual.

The first element is the buffer’s name and the fourth is the list of queries that the module

will accept along with the standard “state” query.

The third element is the list of the module’s parameters, for each one a define-parameter

function is called.

function define-parameter returns [parameter | nil]

( param-name {:owner owner} {:default-value default}

{:documentation docs} {:valid-test test} {:warning warn} )

Every parameter has a unique name. There cannot be two parameters, even in two

different modules, with the same name. Each parameter can have a documentation and

a default value. Is also possible to specify a function that will test the validity of a new

value, in case the parameter’s value is changed by the modeler.

Every module has a set of functions that are called in response to some ACT-R events.

:request ’nxt-motor-requests

:query ’nxt-motor-queries

:creation ’nxt-motor-create

:reset ’nxt-motor-reset

:delete ’nxt-motor-delete

:params ’nxt-motor-params
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5.2.1. Creation, reset and delete

Those functions are called by ACT-R when the module is created, reseted or deleted.

They only have the task to initialize the module or destroy it.

5.2.2. Request

The request function is called every time that the model makes a request to one of the

module’s buffers.

It must accept three parameters:

• The instance of the module, it can be used to reference to the module’s parameters.

• The name of the buffer. In case the module has more than one buffer, this is useful

to know on which one of them the request was made to.

• The chunk-spec, the object contained into the buffer and, at the same time, the

request itself. Testing the slots of this chunk the model can understand which kind

of request it has been made.

There is an example of a request in a model:

+buffer-name>

isa chunk

slot1 value1

slot2 value2

5.2.3. Query

The query function is called when the model makes a query to the module.

A query does not imply an exchange of chunks, even if it is made on a specific buffer, it

is only supposed to test something and return a boolean. A query gives back a boolean

value, so it can be used to trigger a production.

Every module must respond to the query on its state, but it can also have other kinds

of queries. For every buffer a module can respond to an indefinite number of queries.

Normally a module accepts only the standard “state” query. To tell it to accept more

queries, it is necessary to write their names in the module’s definition, as explained earlier

in this chapter.
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This functions must accept four parameters: the first one is the instance of the module,

the second one is the name of the buffer, the third one is the name of the query and the

fourth one is the value of this query.

5.2.4. Params

This function is used to modify the module’s parameters.

It accepts only two parameters: the instance of the module and the the value to be

modified.

If the second value is an element, it represents the name of the parameter. In this case

the function will return the value of the specified parameter. If it is a list, the head will

represents the name of the parameter and the body the new value to be set.

The modeler can get or set a parameter outside the module’s definition using the SGP

function.

5.3. Design studies

The design of the interface is of crucial importance for the overall project: a good design

of the interface will bring not only better performance and capabilities in the modules

themselves, but also better performance for the ACT-R model.

The first consideration has been to respect the common ACT-R design:

all the pre-existent modules had some common design rules that have been replicated in

the new built modules. These rules include the standard “state” query and the possibility

of both querying and modifying the parameters, that have been kept even if they were

unnecessary.

An uniform naming rule has been applied to all the names, the prefix “nxt” identifies

buffers and parameters owned by the nxt-specific modules.

Some other design choices have been taken, based on the common sense of good design:

all the parameters have validity tests for type and range and their values can only be

accessed through a query to the module, the chunk-types needed by one module have been

kept private and each query produce an error message if the input value is malformed.

Each module takes care of one specific sensor and provides all the functions needed

by it to operate. The commands to the sensor must be sent as a request to the buffer,

or the buffers, owned by the module, a request is made placing a well-formed chunk in

the buffer. The module responds to a valid query placing in its buffer a new chunk that

contains the answer to the query.
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A response is not mandatory, a module can just do what is requested to it and give no

answer: this is the case of the query to the motors, there is no need for an answer because

the result is deterministic and well visible through direct observation.

A special case of implementation is the touch module: no requests can be made to its

buffer, it can only be queried about its status. The decision of not providing any request

comes from the functioning of the touch sensor: the sensor cannot be driven or even

turned on or off, its functioning is completely passive.

Since there is no need for giving any input to the sensor, there is consequently no need

to make any request to the module. Every time that the model needs to query the touch

sensor, will be enough to query the module and read the state of the sensors.

The design of the single modules is inspired by the design of the standard ACT-R

modules that have similar functions: for example the module that controls the motors

operates in a similar fashion as the ACT-R’s motor module, responsible for the hand

movements like typing or moving the mouse cursor. The sensor that controls the color

sensor operates, as much as possible, like the ACT-R’s vision module.

The standard ACT-R visual system is composed by two parts: the visual-location

buffer accept requests containing some constraints about the visual object to find, like

the position in the visual scene. Following these constraints the vision module look for a

matching object in the visual scene.

The visual scene is represented in ACT-R by the “Visicon”, that stands for Visual Icon,

a real or a virtual device on where visual objects can be inserted and retrieved.

The vision module in addition operates a process called buffer-stuffing : every time that

a new object appears on the visual scene the module creates automatically a new chunk

in the visual-location buffer that contains a description of that object.

This system allows the model to react quickly to a new visual stimulus.

After a new object appears on the visual scene and is recognized by the visual module,

the modeler can decide whether the event is worth of attention or not. In case the event

is significant the model can send a request to the visual buffer, asking it to shift the

attention to the new object and give some more information about it.

The vision module can concentrate its attention only on a single object at a time and

every shift must be requested through the visual buffer, giving to it the appropriate

visual-location chunk.

The vision module responds to an attention shift placing a new “visual-object” chunk in

the visual buffer. This chunk contains more information about a defined visual object,

like its color, the type of the object, its dimensions and its position on the screen.
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Our implementation follows this pattern and overrides only the first half of the process.

(defun poll-sensor (instance)

(setq port (nxt-vision-port instance))

(let* ((number (colorsensor (nxt-vision-port instance)))

(color (case number

(1 ’black)

(2 ’blue)

(3 ’green)

(4 ’yellow)

(5 ’red)

(6 ’white)

(t ’black))))

(if (or (not (eq color *previous-color*)) ;if the color changes

(eq number 2)) ;of if it-s blue

(let ()

(clear-exp-window)

(add-text-to-exp-window :text "O" :color color)

(proc-display :clear t)))

(setq *previous-color* color)

);let

)

The color sensor starts its operation after a request to the nxt-visual buffer is issued.

The module respond to the request turning the sensor on and starting a new process that

polls at a constant frequency the color sensor. When a change in the color is recognized,

or the sensor reports the color blue that identifies an emergency situation, a new visual

object is written on the Visicon. The information about the color read by the sensor is

forwarded by the color of the newly created visual object.

After the object is drawn on the visual scene, the procedure to refresh the screen is called.

The vision module will then rescan the visual scene and find the new object, in response

to this event the module will do buffer stuffing and communicate to the module this

visual change. The visual process will then go on as normal, with an attention shift and

a subsequent analysis of the object.
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5.4. Module implementation

5.4.1. nxt-motor

This module controls the engines, when a request is made to its buffer the module

responds activating or deactivating the specified motors. This module assumes that

normally two motors are linked, called left and right motors, and optionally a third motor

can be linked and controlled separately. The module needs to know to what ports the

engines are linked, it uses as default values the standard diagram suggested by LEGO.

If the modeler wants to change the disposition of the engines, he must change the

corresponding parameter through the SGP function.

(define-parameter :c-engine

:documentation "nxt’s third engine, normally not used for movement"

:default-value #\a

:valid-test (lambda (x) (characterp x))

:warning "a character"

:owner t)

(define-parameter :r-engine

:documentation "nxt’s right engine"

:default-value #\b

:valid-test (lambda (x) (characterp x))

:warning "a character"

:owner t)

(define-parameter :l-engine

:documentation "nxt’s left engine"

:default-value #\c

:valid-test (lambda (x) (characterp x))

:warning "a character"

:owner t)

There are three parameters, one for every engine, that encode the port to which the

engine is registered. The parameters r-engine and l-engine correspond to the right and

left engines, used for the robot’s locomotion. All the movement functions in this module

work on the two engines registered in these parameters.

The third parameter, c-engine is the auxiliary engine that can be used to control other

functions, like a claw to pick up objects. These three parameters accept as value a

character, the valid values are ’a’, ’b’ or ’c’.
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The last parameter, velocity, accepts an integer that specifies the engines’ velocity.

(define-parameter :velocity

:documentation "max rotation velocity"

:default-value *engine-velocity*

:valid-test (lambda (x) (integerp x))

:warning "an integer"

:owner t)

This module has only one buffer called nxt-move that is used only to receive chunks, that

are created by the modeler for controlling the engines.

These chunks order a movement for a certain duration, specified by the duration slot.

(chunk-type move-forward duration)

(chunk-type move-backwards duration)

(chunk-type turn-right duration)

(chunk-type turn-left duration)

The activate-motor chunk can be used to control a single engine, the chunk must contain

in its slots a valid port, velocity, direction (t means forwards and nil means backwards)

and duration values.

(chunk-type activate-motor port velocity direction duration)

The last commands are used to interrupt a movement: The deactivate-motor chunk

stops the engine specified by the port in its slot, while the emergency-stop chunk brakes

all the engines at the same time.

(chunk-type deactivate-motor port)

(chunk-type emergency-stop)
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5.4.2. nxt-touch

This module controls the touch sensors, it can control up to four sensors but the default

value is two. The value of the ports can be changed through a parameter request.

The only parameter of this module is called touch-port and it contains a list of numbers,

between 1 and 4, that identifies the port to which the sensor is connected.

(define-parameter :touch-port

:documentation "port to which the sensors are connected"

:default-value ’(1 2)

:valid-test (lambda (x)

(and

(listp x) ;must be a list

(dolist (var x t)

(if (or (not (numberp var)) (< var 1) (> var 4))

(return nil)) ;must be a number between 1 and 4

)))

:warning "a list of valid ports"

:owner t)

This module has a buffer called nxt-touched, but it is only used to query the module:

(touched ;did it touch something?

(setq result

(dolist (var (nxt-touch-port nxt)) ;for every sensor

(if (touched? var) ;if it’s pressed

(return t))

);dolist

);setq

(case value

(true result) ;true if it touched

(false (not result)) ;false if it touched

(t (print-warning "Bad state query to the ~s buffer" buffer))

);case

);touched

If the nxt-touched buffer receives a query of type touched, with value true, it returns true

if the sensor reports a pressure, if the value is false the answer is its logic negation.
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(sensor ;did the specified sensor touch something?

(if (member value (nxt-touch-port nxt)) ;checks if the specified port

has a sensor attached

(touched? value); reads from the sensor

(print-warning "No touch sensor defined for port ~s, define a

new sensor first" value)

);if

);sensor

If the query has type sensor, with value a number that corresponds to a valid port number,

it returns true if the sensor on that port reports a pressure.

(sensors ;are ALL the specified sensors activated? it must be a list!

(dolist (var value t)

(if (member var (nxt-touch-port nxt)) ;if the port is valid

(if (not (touched? var)) ;if one sensor is not pressed

(return nil)) ;finish and return nil

(return (print-warning "No touch sensor defined for

port ~s, define a new sensor first" var)) ;print-warning returns nil

);if

);dolist

)

If the query is a sensors, with value a list of numbers that corresponds to a list of valid port

numbers, it returns true if all the sensors (logic-AND) on those ports report a pressure.
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5.4.3. nxt-vision

This module controls the color sensor. The default value of the port is the one suggested

by LEGO, but it can be changed through a parameter request.

Its only parameter, called visual-port, contains a number between 1 and 4.

(define-parameter :vision-port

:documentation "port to which the sensor is connected"

:default-value 3

:valid-test (lambda (x)

(and (integerp x) (> x 0) (< x 5)))

:warning "a valid port number"

:owner t)

This module has a buffer called nxt-visual, but it does have no other purpose than to

query the module.

(light ;used to turn on and off the sensor

(case (third (car (chunk-spec-slot-spec chunk-spec ’turn)))

(on (colorsensor-white (nxt-vision-port instance))

(setq polling-event

(schedule-periodic-event 50 ’poll-sensor

:maintenance t :time-in-ms t :params (list instance)))

)

(off (colorsensor-off (nxt-vision-port instance))

(delete-event polling-event) ;stop polling

)

(t (print-warning "Wrong parameter for the \"light\" request"))

);case

);light

If the nxt-vision buffer receives a query of type light, with value on, it will turn the sensor

on and fork a new process that will run the polling function every 50ms 2 to check the

sensor’s state. If the value is off, the sensor will be turned off and the polling stopped.

When the sensor identifies a change of color from the previous state, or the color blue, it

draws on the visicon a letter of the same color. This action triggers a standard ACT-R

procedure that will allow the model to realize that a change happened.

This solution fits perfectly into the ACT-R structure and allows the modeler to write a

model that’s independent from the kind of visual input.

2
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5.4.4. nxt-distance

This module controls the ultrasonic sensor. The default value of the port is the one

suggested by LEGO, but it can be changed through a parameter request.

(define-parameter :distance-port

:documentation "port to which the sensor is connected"

:default-value 4

:valid-test (lambda (x)

(and (integerp x) (> x 0) (< x 5)))

:warning "a valid port number"

:owner t)

The only parameter of this module is called distance-port and it contains a number,

between 1 and 4, that identifies the port to which the sensor is connected.

(obstacle

(EVAL (READ-FROM-STRING (format nil

"(set-chunk-slot-value read distance ~D)"

(distance (nxt-distance-port instance)))))

(EVAL (READ-FROM-STRING (format nil

"(set-chunk-slot-value read counter ~D)"

(third (car (chunk-spec-slot-spec chunk-spec ’counter))))))

;scheduling the action to fill the buffers

(schedule-event-relative 0.1 ’set-buffer-chunk

:priority :min

:params ’(nxt-distance read :requested t) ;put into the $1

buffer the $2 chunk

:output nil)

);obstacle

This module has a buffer called nxt-distance. When a request is made to this buffer, with

a chunk of type obstacle, the module reads the distance from the sensor and updates the

chunk in its buffer with the distance value returned by the sensor. This system takes two

production to obtain the value, the first production must issue the request and the second

can read the result from the nxt-distance buffer.
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6. Model

6.1. The Model

Our first approach was to write a cognitive model that would use the perimeter strategy

to navigate the labyrinth, replicating the experiment previously conducted with human

subjects described in [BHW09].

The model was provided with three exploration strategies:

• The right perimeter strategy gives the model a right turn preference for all situations.

When the agent meets a junction it first looks to its right for a free path which it

follows id present; if the path is not free (e.g.. a wall is detected) it will continue on

straight ahead if possible, and only as a worst case scenario it will turn left.

• The left perimeter strategy is identical to the right perimeter strategy, but with a

preference for left turns.

• The random walk strategy chooses a direction at random until a free path is found.

To begin, all three strategies had equal probabilities of being selected by the model.

Later these probabilities were modified by the model itself, based on the performance of

the respective exploration strategy.

The utility learning function embedded in ACT-R, based on this learning process.

There is a utility value associated with each strategy that records its performance.

Associated with each goal is a “reward” that is handed out after the goal is reached,

this reward is divided among the strategies used to reach the goal and is proportionate

to the number of times each strategy was used and the duration of this use. If reaching

the goal takes too long, the reward is negative and the strategies are penalized.

Several tests analyzed the performance of this model. The tests were executed in three

special labyrinths: in the first one the goal was situated in the top-right part and the best

path required turning right at all times. The second was identical the first mirrored on

its vertical axis. In the last labyrinth the goal was two steps forwards from the start.

Clearly each of these labyrinths catered to only one strategy as much as possible.
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The model showed the ability to learn: in the 60% of the cases the correct strategy

was chosen. This value is surprisingly low, considering the type of environment used.

Furthermore, in the final labyrinth, the random walk strategy was chosen about 50% of

the time. The other 50% the perimeter strategy was erroneously chosen. In practice the

perimeter strategy finds a suboptimal solution, so the algorithm is technically not wrong;

the problem is that, because of the aleatory nature of the strategy, random walk can lead

to worse results than the deterministic perimeter strategy.

Another important disadvantage of this solution is the lack of adaptability: if, for

example, the optimal path consists of N turns right and one turn left, the right perimeter

strategy will be selected and so the last turn left will never be taken. This situation

happens, because this approach uses a single strategy for the whole run, while the optimal

path could be divided in several parts each of which needs a different strategy.

These considerations led us abandon this approach in favor a new, more flexible system.

6.2. A revised approach

To improve upon the approach described above, the idea was to shift the utility value

from the strategy to the state: Instead of executing the best rated strategy in all situations,

the best action for the current state should be chosen. The entire set of actions executed

along the optimal path forms the best strategy for a particular maze.

For the second approach the model was refined: an Active Reinforcement Learning

algorithm was implemented [RN03, p.771]. The task of Reinforcement Learning is to use

the feedback, or reward, given by an evaluation function to discriminate between positive

and negative actions. The ability of distinguish between good and bad is on the basis

of learning a (sub-)optimal policy. The term policy refers to a solution that specifies,

for every state, what action the agent must perform to reach the goal.

A task of Reinforcement Learning is Active if the policy is not fixed: the agent has a

choice of action and must decide what to do. In our case the agent is supposed to follow

the most promising path through the labyrinth and, when necessary, update the policy

to a better performing one. The consecutive updates will eventually lead to the optimal

policy, that can be easily found by solving the Bellman equations [RN03, p.620].

U(s) = R(s) + γmax
a

∑
s′

T (s, a, s′)U(s′)

For this purpose a Policy-Iteration function was implemented.

Details follow in section 6.4.3 on page 57.
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A standard implementation of an active agent depends on a utility function that assigns

a utility to each state. To make the best decision, the agent needs to know to which state

each action leads to, and thus must build a model of the environment. This is not desirable

in the case of an exploration problem where the environment is completely unknown to

the agent. The strategy forces the agent to learn, not only the utilities of all the states,

but also how the states are linked together by means of the actions.

With this in mind, another possibility to implement such an agent is preferred:

the Q-learning agent uses a Q-function to evaluate the possible moves. The Q-function

associates a state with an action and returns the performance of that combination,

U(s) = max
a
Q(a, s)

where U(s) is the utility of the state s and Q(a,s) returns the utility of taking the action

a from the state s. A Q-function agent has the advantage of not needing a model of the

environment to operate: it can choose among the available alternatives without having to

know the outcome. A disadvantage is that without having a model of the environment, a

Q-learning agent does not learn a set of consistent utility values, a lack that can decrease

its learning efficiency.

6.3. The internal representation

While exploring, the cognitive robot develops an internal representation of the

environment in declarative memory. This representation contains all of the information

that it knows about the already explored environment. For every step or turn the

robot takes, information is stored in declarative memory in a chunk of type movement,

these chunks have a slot called direction that encodes the direction of every movement:

(chunk-type movement direction counter)

MOVEMENT0-0

ISA MOVEMENT

DIRECTION FORWARDS

COUNTER 1

If the robot turns itself to a new direction, a new movement is created and the name of

the direction is written into its direction slot. If the robot keeps going the same direction,

a new chunk with direction forwards is created.
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Every movement chunk has another slot called counter, where a progressive number

is stored. The numbers detail the sequence of movements of the current run.

Through this trace, it is always possible to retrieve the direction it is currently facing:

it is memorized in the last movement chunk with a direction value different from forwards.

The maze is represented in declarative memory as a graph, whose nodes are the

junctions. The model does not care how long and how twisted the road from

JunctionA to JunctionB is, because it does not involve decision making.

The only relevant information is the expected performance in taking a specific turn,

which is represented in declarative memory by a chunk of type junction.

(chunk-type junction turn north east south west performance)

JUNCTION1-0

ISA JUNCTION

TURN EAST

NORTH 0

EAST 2

SOUTH 2

WEST 3

PERFORMANCE 62

This chunk identifies a specific junction by the values in four of its slots (north, east,

south and west) and a direction in its turn slot. The use of an absolute coordinate system

allows the model to recognize a definite junction, no matter which direction it came

from. This solution adds the complexity of keeping track of every state of the agent’s

orientation but avoids the overwhelming redundancy of memorizing several copies of the

same chunks. Having multiple copies of the same chunk would introduce the disadvantage

of not being able to realize, in a simple way, that they are related.

For every turn the model must know its quality, this value is encoded in the performance slot.

A smaller number implies a better performance, the number -1 means that this direction

was taken but not yet rated.

This type of chunk virtually implements the above-quoted Q-function:

the performance slot rates the action of turning in a specific direction, written in the

turn slot, while in a determined state, specified by the four distance measures.

When the model encounters a junction, all the junction chunks related to it are retrieved

from declarative memory. The information stored in these chunks allows the model to

know which routes have already been explored, and which is the best among them.
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With such a complete knowledge the model is able to choose the most promising

direction and find the shortest path to the goal.

These two chunk types form the model’s Knowledge Base, through which the previous

explorations can be reconstructed. The movement chunks contain the path history:

They save, for every step, the direction in which the model was going; while the junction

chunks compose the decisional history and save the order in which the junctions were

taken and the performance value’s updates of every junction.

Goal found

False alarm

Avoid loop

Wall

Read from the
color sensor

Curve
Junction

Measure four directions

Retrieve junctions

Choose best direction

Dead end

Choose random direction

Move forward Recognize obstacle

No other
choice

At least
one match

No match

Figure 6.1.: The local search algorithm implemented in ACT-R.
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6.4. Algorithm

The robot uses a local search algorithm (cf. Fig. 6.1) to find the best (shortest) path

to the goal, it works as follows: If the sensors report no obstacle, the robot keeps moving

forward step by step. After every movement a new movement chunk with direction

forwards and a progressive number in the counter slot is saved in declarative memory.

When the color sensor reports a change in the floor color, a visual-location chunk

appears in the visual-location buffer. At this moment the robot stops and four different

responses can follow: depending on the color read, one of four productions will be fired;

each production deals with a different type of landmark (a junction, an obstacle, the goal

or a false alarm).

6.4.1. Junction

When a junction is detected, by means of a yellow marker, the robot turns itself in the

four directions and measures the distance to the nearest wall with its ultrasonic sensor.

These four numbers allow the model to discriminate between junctions, because it is

unlikely that any two junctions will have exactly the same values.

Once the distances have been retrieved, it tries to recognize the junction among the ones

it has seen before. This process is completed by comparing the length of the four corridors

that branch off from the junction with the ones memorized in declarative memory.

To make this process robust against measurement errors, these values do not need to be

equal to match, but they need to differ less than a predefined threshold.

Many retrieval requests to declarative memory are issued by calling the same

production many times until the retrieval process fails.

Each chunk can only be retrieved once because the model checks the trace and excludes

previously examined chunks in the next retrieval request.

This process makes use of dynamic productions : these productions are compiled in

run-time and, unlike normal productions, can have variable symbols on their left sides.

Every time a junction chunk matches, the value of its turn slot, that contains the direction

it is referring to, is saved in the corresponding slot of the goal buffer:
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=imaginal>

isa junction

turn =dir

=retrieval> ;junction retrieved from declarative memory

isa junction

turn =turn

north =n

south =s

east =e

west =w

performance =perf

==>

!bind! =back (turn-back =dir)

!bind! =temp (get-movement =dir =turn)

=goal> ;modifying the goal buffer

=turn =turn

=back closed ;mark the way it’s coming from as closed

=temp =perf

For example: assume the retrieved junction contains the value east in its turn slot.

The chunk in the goal buffer, that is of type ext-junction

(chunk-type ext-junction turn north east south west performance front right

left)

is modified to contain the value east in the east slot. The function turn back gives the

opposite direction of its parameter as output. In this example assume that the current

orientation is north, the function will return the value south.

The chunk in the goal buffer is updated to store the fact that the way the robot came

from is virtually closed, because it is not supposed to go back on its steps.

The ext-junction chunk has three slots more than a normal junction, these are needed to

keep track of the performance of each retrieval for later use.

The function get movement returns the direction in which the robot must turn to go in

the direction contained in its second parameter. In the current example the retrieved

junction says to turn left (from north to east).
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Once the goal buffer is properly modified, it is possible to go to the next step

and look for another match. Since the same production will be called again next,

the model needs to be sure not to match with the actual junction anymore.

The request made to the retrieval buffer is as follows:

+retrieval> ;tries to retrieve another chunk

isa junction

- turn =north

- turn =east

- turn =south

- turn =west

- turn =back

- turn =turn

north =n

south =s

east =e

west =w

- performance nil ;only a direction it took before

The request specifies that this time must not match junctions whose turn value is equal

to the direction the robot is coming from (=back), it has been retrieved this time (=turn)

or is memorized in the goal buffer (=north, =east, =south, =west represent the values

contained in the homonym slot of the ext-junction chunk).

Substituting the variable terms with their actual values, the request will look like this:

+retrieval>

isa junction

- turn nil

- turn east

- turn nil

- turn nil

- turn south

- turn east

...

This process can repeat itself from zero to three times, depending on how many chunks

will match overall. Most of the time there is at least one direction that has not been rated

yet and so for that direction no match will be found.
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Goal Productions Imaginal Declarative memory

Corridor

          Go forward

New junction

               Choose
               random

Known junction

                Choose
       best direction

Isa ext-junction

right
front
left

empty
closed
empty

Isa ext-junction

perf-right
perf-front
perf-left

999
83
35

Isa planning

state move

Isa movement

direction
counter

forwards
=count++

Isa movement

direction
counter

=dir
=count

Isa junction

turn
performance

right
999

Isa junction

turn
performance

left
35

Isa junction

turn
performance

front
83

move

go_left

Isa junction

turn
performance

right
-1

select_right

select_left

Utility = 10

Utility = 0

Figure 6.2.: Decision process for corridor, new and known junctions.

Once the retrieval process is finished, the model remains with a certain number of

directions that did not match. The reasons for the lack of a corresponding chunk in

declarative memory can be one of two:

• That path has not been explored yet.

• That direction is blocked by a wall.

The next step is to exclude from further actions all directions that lead to a wall: the

model checks every direction that did not match its corresponding distance and, if it is

less than a certain threshold, it detects a wall and marks that direction as not selectable.

=imaginal>

isa junction

turn =dir

<= north =threshold

==>

=goal>

north closed

At this point the only directions marked in the goal buffer with the value nil are the

ones not yet explored. If there is still at least one direction that has not been tried yet,

the model has two possibilities:
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The first possibility is to select that direction and explore a new branch of the labyrinth;

if more than one path has not been rated yet, the model chooses the one to explore

following the defined exploration strategy. At the beginning of the exploration, when the

knowledge of the environment is almost none, the model has no other choice than always

follow the exploration strategy. At this point of the execution four different productions

are ready to get fired by the procedural module: each of these concurrent productions

aims to move towards one of the four cardinal points. The decision is made to fire the

production with the highest utility. The exploration strategies are implemented through

variable utility bonuses for each of these four productions.

An overview of the available exploration strategies and a deeper analysis of the

implementation will be discussed in the followings chapters.

At this point the decision making ends and the physical moving begins; for this reason

the absolute coordinate system becomes obsolete and the model switches to a relative

coordinate system that discriminates between right, front and left.

Instead of preferring a new exploration that could bring to worse performance the

model can choose a more conservative option: select the way with the best performance

among the directions that matched in declarative memory and go on a safe path.

This decision is made looking at the values saved in the front, left and right slots in

the goal buffer. The smaller the performance value, the better the option.

The decision between an enterprising and a conservative approach is made randomly,

with a probability of taking a conservative path proportional to the performance rating:

The better the performance, the more likely the conservative approach is to be selected.

This system encourages exploration in the first stage, when it is more likely that a shorter

way can be found; and is more conservative towards the end, when exploration will bring

a minimal increment of performance. A complete knowledge of the environment will make

the algorithm completely deterministic.

This random choice is implemented by giving the productions a random utility bonus.

The calculate utility function is set as the :utility offset function, which is called

every time the utility value of a production must be computed. The number given

as output by this function is then added to the actual utility value of the production.

The production with the higher utility value will then be fired by the production system.

When the function is called with the name best front as argument, it saves in the utility

variable the value of the front slot in the goal buffer, which contains the performance read

in the matching chunk during the retrieval phase. At this point the function act-r-random

is called with the ratio between 100 and that performance.
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(defun calculate-utility (prod_name)

(case prod_name

(’best-front

(with-output-to-string (*STANDARD-OUTPUT*) (setq utility

(EVAL (READ-FROM-STRING (format nil "(chunk-slot-value ~s front)"

(car (BUFFER-CHUNK GOAL)))))))

(- (act-r-random (/ 100.0 utility))

*utility_thresh*))

...

The random function gives a random number between zero and its argument as output:

the bigger the utility value, the smaller the range in which the random number can fall.

A random threshold is then subtrated from this random number this allows the utility

value to become negative. In the code the value of the utility threshold is set at 5.

This value gives a mean utility bonus of 0 for a performance value of 10, a positive mean

bonus for values smaller than 10 and a negative mean bonus for those greater than 10.

If no further exploration is possible in any of the selectable directions matched in

declarative memory, the model chooses the way with the best performance.

The last possible situation is that the junction does not have any selectable direction,

because there are only walls or dead-ends. Since this junction cannot lead to a solution,

there is no sense returning: the model purges the branch that leads to the junction,

disallowing the model to come back in the future. The model traces back into its memory

to the last selected junction, the one that brought the model to this dead-end and updates

the performance value of that direction. During the next run, that direction will be

remembered as leading to a dead-end and avoided.

In the particular case in which the only selectable direction has already been taken

during the current run, that is the robot retracing its steps, a loop is detected.

Loops are dangerous situations in which the agent keeps running in circle and choosing the

same directions again and again. To break a loop it is necessary to let the model change its

choices, that means changing the performance value of one of the junctions it encounters

during the loop: the last unrated junction that the robot took is marked as a dead-end.

The model will then follow the loop once again and again find the previous junction.

This time the usual direction will be marked as a dead-end, and thus not selected.

The model is forced to find another way or purge that junction, interrupting the loop.
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6.4.2. Wall

If a wall is nearby and the robot is moving towards it, the sensor reports the color blue.

Because no junction has been detected, there is only one possible valid direction:

a right or left turn, or a dead-end.

Special productions are called for a respond more quickly, because the whole process of

reading and memorizing the distances is not needed.

The robot will simply follow the curve or, in case of a dead-end, go back on its steps.

This quick response routine first turns the robot to the right and measures the distance

to the wall. If the distance is greater than a certain threshold, the direction is considered

free and the robot moves forward and continues exploration along this path.

If the measure is less then the threshold, that direction is registered as a wall and the

routine continues to look for a free path turning to the left.

The left side is the only remaining possibility for a free path.

If the distance sensor detects a wall here as well, the model recognizes a dead end; it turns

back and take the corridor it came from.

When a dead-end is encountered the last junction in the trace, the one which led to this

dead-end, is marked with a extremely low performance value, which will tell the model

to avoid that direction in the future.

This is the only case in which the declarative memory is accessed.

In case of a curve a new junction chunk is not created because no decision was made.
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6.4.3. Goal

If a goal is detected, all junction chunks used in the last run are rated by a rating

function that implements the Policy-Iteration routine [RN03, p.624].

The Policy-Iteration algorithm finds an optimal policy in a finite number of iterations

from an initial policy. During each iteration the current policy is improved until no further

improvement can be done.

Each iteration is divided in two steps:

• Policy evaluation: the utility of every state is calculated as if the current policy were

to be executed.

• Policy improvement: a new policy that increases the performance, compared to the

previously calculated utility values, is created.

In this model the evaluation is done during the run: the utility of every junction is

represented by its performance value.

During the run the performance of each new junction is saved in declarative memory,

and can have value -1, in case of newly explored paths, or 9999, that identifies a dead-end.

The performances assigned in previous runs are not modified. At the end of the current

run the rating function is called by the model and performs the improvement step.

At first the new performances of the junctions encountered during the exploration are

calculated by the rating function as the time difference between the goal discovery and the

last access to the chunks representing the junctions in declarative memory.

This rating system has the advantage of being precise, because the ACT-R’s virtual time

needed to complete every operation is fixed and constant, so reliable.

After that the new policy is updated indirectly, by updating the utility values of the

junctions. A value is updated if certain preconditions are met:

(if (and (numberp old_performance) ;if the value is nil no need to update it

(not (eq old_performance 9999)) ;it isn’t a dead end

(or (eq old_performance -1) ;if it wasn’t rated yet

(< new_performance old_performance))) ;the new value is better

(EVAL (READ-FROM-STRING (format nil "(set-chunk-slot-value ~s performance ~D)

" junction new_performance)))

);if

If the old performance value is higher, the junction is not a dead-end, or has not been

rated yet, the function updates the performance with the new value.

57



Stefano Bennati 6. Model

After the rating function has completed the simulation starts again.

For this run the model will count on more information about the environment and on a

better policy. The use of the experience accumulated during the previous explorations

leads to better choices. Each run in the labyrinth entails an iteration of the

Policy-Iteration routine. This routine will, after some time and iterations, converge to a

sub-optimal solution, and will find a policy that cannot be improved upon anymore.

The algorithm does not always find the optimal, instead sometimes a sub-optimal

solution whose performance may change from a execution to the other is found.

On the other hand, Policy-Iteration assures convergence to an optimal solution.

The reason why our implementation is not always optimal can be found in the

environment: the model always finds the optimal solution based on current knowledge of

the environment, different levels of knowledge lead to different optimal solutions.

Since the utility of the junctions is computed and might vary during the execution,

the model always operates with different sets of utility values.

Furthermore, the knowledge is generally incomplete. If the environment were known

a-priori and totally observable, then the model would be able to solve it optimally.

6.4.4. False alarm

The final possible situation, in which the sensor gives a false alarm, is caused by a

reading error: the robot is lifted from the ground or the start point is seen during

exploration. This production is fired when the other three do not match.

In case of a false alarm the model ignores the reading and goes back to the initial loop

of movements forwards, until it receives a new reading from the color sensor.
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6.5. Distance computation

The Act-Rientierung Project [DK+11] implemented an algorithm that reconstructs the

distance between non-adjacent waypoints, using information about adjacent waypoints

gleaned from exploration. This feature has been integrated into our model to provide

distance computation capabilities. The original project used a basic navigation algorithm

to explore a maze and find waypoints placed in it. The model saves the distance of each

waypoint from the start position and calculates the distance from the previous waypoint,

the last found during the current exploration. After exploration, once all duplicates have

been removed from the list of visited waypoints, the model computes the distance between

every pair of elements in the list.

During this last phase, if the distance between two determined waypoints, A and

Z, is not know at the moment, the model tries to compute with an indirect method.

If the waypoints are not adjacent, it means that there is at least one waypoint on

the path between the two. The simplest example is a waypoint B, that is directly

connected to both A and Z. All more complex situations can be traced back to a recursive

application of this simplest case. When direct computation is not sufficient, the model

expands its knowledge by joining the information about two pairs of directly connected

waypoints (e.g. A-B and B-Z) in a single entity that represent a direct connection

between the two extremes. With this expedient it becomes possible to calculate the

distance between every pair of waypoints.

The computation is made using chunks that represent numbers. Adjacent numbers

have a high similarity value, this value tells ACT-R’s retrieval system how closely the

two chunks are related. If two chunks are very similar, the retrieval mechanism has

a higher probability of confusing the chunks, and thus of retrieving the wrong one.

This situation leads to counting errors that reproduce human behavior, seen in

similar experiments done with human subjects. The integration in our model entails

the use of the junctions as waypoints, and allows us to take advantage of the new and

sophisticated navigation algorithm in conjunction with the distance computation feature.

The model, during exploration, stores distances of adjacent junctions in specific

waypoint chunks, these values keep track of how many steps it takes to go from one

adjacent waypoint to the other. When the model finds the goal, it goes through the list of

known junctions, which includes only those found during the current run of exploration,

and calculates the distance between each pair of elements. With consecutive runs the

distance values may change, because of the retrieval errors in the counting process.
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6.5.1. Example case

Given: the chunk type waypoint that stores the distance between two different junctions,

represented by the length of the corridors that branch off it in the four directions.

(chunk-type waypoint

;first waypoint

n1 e1 s1 w1

;second waypoint

n2 e2 s2 w2

distance)

The start point and the goal are treated as special waypoints. As they aren’t junctions,

they do not have corridors whose distance must be read. The start point is represented

by the value -2 in the four directions, the goal by the value -1 in the four directions.

Assume that during the current exploration, only two junctions have been encountered:

The following chunks are present in declarative memory:

WAYPOINT0-0

ISA WAYPOINT

N1 -2

E1 -2

S1 -2

W1 -2

N2 NIL

E2 NIL

S2 NIL

W2 NIL

DISTANCE 0

This chunk representing the starting point is automatically created by the model on

every start, to assure that there will always be a well-formed chunk to begin with.

The distance of this waypoint from the start is, of course, zero.
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WAYPOINT2-0

ISA WAYPOINT

N1 0

E1 2

S1 2

W1 3

N2 NIL

E2 NIL

S2 NIL

W2 NIL

DISTANCE 2

The first junction is found, a new chunk is saved in declarative memory to memorize

that the junction (0,2,2,3) is two steps away from the beginning.

WAYPOINT0-0-0 WAYPOINT1-0

ISA WAYPOINT ISA WAYPOINT

N1 -2 N1 0

E1 -2 E1 2

S1 -2 S1 2

W1 -2 W1 3

N2 0 N2 -2

E2 2 E2 -2

S2 2 S2 -2

W2 3 W2 -2

DISTANCE 2 DISTANCE 2

This pair of chunks immediately saved in declarative memory, which tells us that the

first junction (0,2,2,3) and the starting point are directly connected and separated by a

distance of two. The only difference between the two is the position of the coordinates:

the junctions have been swapped to highlight the commutativity of the distance.
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WAYPOINT4-0

ISA WAYPOINT

N1 1

E1 4

S1 1

W1 0

N2 NIL

E2 NIL

S2 NIL

W2 NIL

DISTANCE 5

The second junction (1,4,1,0) is encountered: it has a distance of five from the start.

WAYPOINT2-0-0 WAYPOINT3-0

ISA WAYPOINT ISA WAYPOINT

N1 0 N1 1

E1 2 E1 4

S1 2 S1 1

W1 3 W1 0

N2 1 N2 0

E2 4 E2 2

S2 1 S2 2

W2 0 W2 3

DISTANCE 3 DISTANCE 3

This pair of chunks tells us that the first and the second junction are three steps apart.

WAYPOINT5-0

ISA WAYPOINT

N1 1

E1 4

S1 1

W1 0

N2 -1

E2 -1

S2 -1

W2 -1

DISTANCE 1
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The last chunk tells us that the goal (-1,-1,-1,-1) has been found and that it has a

distance of one from the second junction. Now the exploration is done and the distance

computation algorithm will start.

The algorithm gives chunks of type Antwort (“answer” in German) as output:

(chunk-type Antwort

;first waypoint

n1 e1 s1 w1

;second waypoint

n2 e2 s2 w2

Wert

Entfernung)

which are actually the same as a waypoint chunk, but with the difference that the

distance is represented by another chunk of type Zahl (“number” in German):

(chunk-type Zahl Name Wert Nachfolger)

(Eins isa Zahl Name "Eins" Wert 1 Nachfolger "Zwei")

The algorithm starts its computation from the first waypoint:

the start point (-2,-2,-2,-2)

ANTWORT0-0

ISA ANTWORT

WERT ZWEI

ENTFERNUNG "Zwei"

N1 -2

E1 -2

S1 -2

W1 -2

N2 0

E2 2

S2 2

W2 3

The first distance can be calculated directly, because the needed information is stored

in declarative memory into the chunk WAYPOINT0-0-0
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ANTWORT1-0 ANTWORT2-0

ISA ANTWORT ISA ANTWORT

WERT FUENF WERT SECHS

ENTFERNUNG "Fuenf" ENTFERNUNG "Sechs"

N1 -2 N1 -2

E1 -2 E1 -2

S1 -2 S1 -2

W1 -2 W1 -2

N2 1 N2 -1

E2 4 E2 -1

S2 1 S2 -1

W2 0 W2 -1

Now the algorithm tries to calculate the distance between the start point and the

second junction. This information is not stored in declarative memory, so the model

needs to get it indirectly from the information it already has. A retrieval is issued to the

declarative module, that requests a chunk that has as first waypoint (-2,-2,-2,-2) and as

second waypoint any valid junction. If the retrieval is successful, the unknown waypoint

(in our example (0,2,2,3), the first junction) is used as first element of a new retrieval

request. The second waypoint is again not specified. The retrieval module will give back

a waypoint among those directly connected to the middle waypoint (in our example it

will necessarily be (1,4,1,0), the second junction).

WAYPOINT6-0

ISA WAYPOINT

N1 -2

E1 -2

S1 -2

W1 -2

N2 1

E2 4

S2 1

W2 0

DISTANCE 5

Now a new chunk of type waypoint will be stored in declarative memory, with

(-2,-2,-2,-2) as the first waypoint, and (1,4,1,0) as the second waypoint and as distance

the sum of the retrieved distances.
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With this information the algorithm can fall back to the direct search and proceed with

the calculations.

ANTWORT3-0 ANTWORT4-0 ANTWORT5-0

ISA ANTWORT ISA ANTWORT ISA ANTWORT

WERT DREI WERT VIER WERT EINS

ENTFERNUNG "Drei" ENTFERNUNG "Vier" ENTFERNUNG "Eins"

N1 0 N1 0 N1 1

E1 2 E1 2 E1 4

S1 2 S1 2 S1 1

W1 3 W1 3 W1 0

N2 1 N2 -1 N2 -1

E2 4 E2 -1 E2 -1

S2 1 S2 -1 S2 -1

W2 0 W2 -1 W2 -1

Once all the distances from the first waypoint are computed, the algorithm skips to the

second waypoint and the process continues until the algorithm has finished.
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7. The Simulator

Once the model was completed, our interest shifted in comparing its performance

against the humans. For this reason we needed a test scenario that could speed up the

development of the model and collect precise numerical results in a short period of time.

Such a task is necessarily completed through the creation of a simulated environment.

The simulator consists of a set of functions that substitute the lisp functions provided by

the nxt-lsp library. Those functions control a virtual robot that travels through a virtual

maze, described by a two-dimensional list that contains different characters with different

meanings. The “virtual” functions interface themselves with the modules in the same way

as the “real” functions do, so there is no need of changes in the module itself.

The virtual robot has the same perceptions as the real one: it can recognize the distance

from the next wall as the number of free cells in front of it, and the color as the character

of the next cell. It can also move in the labyrinth and turn itself, simply modifying the

value of 3 variables.

The advantages of testing in a simulated environment are, first of all, the high speed

at which the simulator can run: the virtual robot does not need to wait for the sensors

to respond or the motors to move, all the physical waiting times are nullified.

Besides the simulator changes the field of operation from a partially observable and

continuous environment to a Fully observable and discrete one. This change takes all

the uncertainty away: the model does not suffer anymore of odometry or measurement

errors, because the position is always exact and discrete.

Another advantage of a simulated environment is its flexibility: substantial changes can

be applied to the maze in a really short time and without leaving the keyboard, allowing

the tester to create a vast amount of test labyrinths in a very short time. Also the robot

can be instantly placed by modifying a couple of variables or can go back to the beginning

without the need for the operator to place it. This last feature is useful to create batch

tests, that automatically start again from the beginning after finding the goal.

The simulator was build following some compatibility criteria. The provided functions

presented a signature identical to the corresponding “real-world” function, that allow

those functions to be effortlessly substituted in the modules.
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The model’s code itself needs no modification at all to be run on a virtual robot.

With this simulator it was possible to quickly obtain large amount of data about multiple

runs, and build a statistic on them. Also the experiments done with it are perfectly

repeatable with the real robot, thanks to the equivalence between the two solutions.

7.1. Implementation

In our implementation the labyrinth is represented as a two-dimensional list (array)

that contains characters.

(x x x x x x x x x x x)

(x x x - - - - x x x x)

(x x x - x x - x - x x)

(x s - j x x j - j g x)

(x x x - x x - x x x x)

(x x x - - - - x x x x)

(x x x x x x x x x x x)

Each character has a different meaning:

• The character ’X’ identifies a wall. The robot can not walk over walls so it checks

every time, before making a movement, that the next cell does not contain a wall.

• The character ’-’ identifies a corridor over which the robot can move.

• The character ’S’ represents the start point. There can be only one start point in

each labyrinth. The simulator looks for it before starting a new run and places the

robot over it. During the navigation, the model gives no importance to it and treat

it as a normal way.

• The character ’G’ represents the goal. Like the start point, it is unique. When the

model finds the goal, the navigation process is interrupted.

• The character ’J’ identifies a junction. When the robot finds a junction, it stop and

start to look around.
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The virtual robot’s state is composed by three variables: its X and Y coordinates, as

indexes in the labyrinth’s array, and it’s orientation. The robot can explore the

environment thanks to the functions that control the robot’s movements:

(defun next_cell ()

(case *userDir*

(0 ;north

(setf row (- (car *userPos*) 1))

(setf col (cadr *userPos*))

(if (checkPosition row col)

(list row col)

*userPos*))

(1 ;east

(setf row (car *userPos*))

(setf col (+ (cadr *userPos*) 1))

(if (checkPosition row col)

(list row col)

*userPos*))

(2 ;south

(setf row (+ (car *userPos*) 1))

(setf col (cadr *userPos*))

(if (checkPosition row col)

(list row col)

*userPos*))

(3 ;west

(setf row (car *userPos*))

(setf col (- (cadr *userPos*) 1))

(if (checkPosition row col)

(list row col)

*userPos*))

(t (prin1 "ERROR"))))

(defun checkPosition (row col) ;; userPos should be inside maze

(if (not (or (< col 0) (< row 0)

(> col (- (array-dimension *mazeArray* 1) 1))

(> row (- (array-dimension *mazeArray* 0) 1))))

t

nil))
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The next cell function updates the user’s position according to its actual orientation.

This function calls the checkPosition routine that controls if the new position is valid.

(defun move_forward ()

(when (not (eq (read_color) ’blue)) ;if the next cell is not a wall

(setf *userPos* (next_cell)) ; it can move forward

))

The move forward function looks in the next cell and, if the cell contains no wall and is

within the labyrinth’s boundaries, updates the agent’s coordinates to the new position.

(defun turn_right ()

(if (eq *userDir* *west*)

(setf *userDir* *north*)

(setf *userDir* (+ *userDir* 1))))

(defun turn_left ()

(if (eq *userDir* *north*)

(setf *userDir* *west*)

(setf *userDir* (- *userDir* 1))))

Other functions allow the robot to turn left or right, by modifying its actual orientation.

The simulator provides functions that clone the behavior of the sensors and give the

virtual robot the perceptions it needs.

(defun read_color ()

(setf coords (next_cell)) ;read the coords of the cell it’s facing

(setf cell (aref *mazeArray* (car coords) (cadr coords)))

(case cell

(’s ’green)

(’g ’red)

(’x ’blue)

(’* ’blue)

(’j ’yellow)

(’- ’white)

(’d ’white)

(t (prin1 "WRONG SYMBOL"))

);case

)
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The function read color reads the character in the next cell, in the direction given by

the robot’s orientation, and outputs a different color according to the read character:

A wall is associated with the color Blue, while a free way with the color White, the

character S is related to the color Green, the goal G has the color Red, and the color

Yellow is paired with the junctions J.

(defun get_distance ()

(setf dist 0)

(setf bak *userPos*)

(while (not (eq (read_color) ’blue))

(setf dist (+ dist 1))

(setf *userPos* (next_cell))

)

(setf *userPos* bak)

dist

)

The function get distance counts how many cells there are, from the actual agent’s

position until the first wall, in the direction given by the current orientation.

The touch sensor is not implemented as no material walls are present, emergency

situations just cannot happen into a virtual environment.
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8. Evaluation

To be able to compare the results the test has been set up as a replica of the Büchner

experiment [BHW09], recreating the same labyrinths inside the simulator (cf. Fig. 2.1);

in both the configuration with the goal on the edge and in the center.

The performance was measured in PAO (Percentage Above Optimum).

PAO = ((dwalked − dshortest)/dshortest) × 100

This unit of measurement represents how worse the found solution is, in percentage,

respect to the optimal, shortest solution. For example if the optimal solution has a value

of X and the solution found by the algorithm has a value of X + X
2

, then the PAO value

of the suboptimal solution will be 50%.

The same unit of measurement was used in this experiment as well, so that the results of

both can be easily compared.

During every simulation, for each of the four environments, the model had a time limit

of 4000 units of ACT-R’s virtual time to find an optimal solution. Each time that the

model finds a goal the agent is placed again on the start point and the exploration starts

again. After each run the information about the environment and the goal position still

exists in the declarative memory, and is used to find a shorter path to the goal. When

the 4000 units of time are expired the simulation ends, the results are printed and the

declarative memory is cleared. In the beginning of each simulation the agent has no

information whatsoever about the environment, so each simulation is run in the same

working conditions.

For every environment 50 simulations have been run and a statistic extrapolated from the

results. Within this time constraint the model could find a stable suboptimal solution

84% of the time. The diagram in Fig. 8.1 shows the mean quality of the consecutive

solutions.

The curves in Fig. 8.1 show similar learning behavior for all four labyrinths:

The model starts with an uninformed exploration, according to the actual strategy, until

it finds the goal. This phase can take more or less time depending on the effectiveness of

73



Stefano Bennati 8. Evaluation

Figure 8.1.: Behavior of the model, showing a learning curve similar to the humans’ [BHW09].

the selected strategy in the actual maze configuration. In the graph is blatant to realize

that the actual strategy performed way better in the configurations with the goal on the

edge than in the ones with the goal in the center.

After this first “blind” run the model starts an exploration phase that will try new

ways until all possibilities have been tried and rated. This phase takes, in average, more

time to find the goal than the first run and than the human counterpart. Because the

possible different paths are in a finite number it happens that the length of the second

run is in inverse proportion to the first one: if the first run is short the number of unrated

variations to the original path is high and the exploration will take much time to rate

them all; if the first run takes long time to complete more paths are going to be rated and

so, to complete the exploration, just a small number of alternatives need to be covered.

After the second run the model has enough information to start the learning process

and improve, in every run, its performance. After less than 4 runs, on average, the model

has gathered enough information about the environment and stabilizes on a suboptimal

solution that is covered until the time elapses.

In the experiment done by Büchner the test subjects shown a preference for the

perimeter strategy to navigate in the maze and search for the goal. In the current

experiment different strategies were tested:
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8.1. Deterministic perimeter strategy.

The first strategy uses a right-preference perimeter strategy. Each application of

turn-right production rules yields a utility bonus, a smaller bonus is given for the

go-straight production while for the turn-left no bonus is assigned. The model will then

prefer to turn right over turning left, because it assures a higher reward. This means that

the agent will try, for every junction, to take the rightmost free corridor.

The test showed that the first run is completely deterministic and in every run the

agent always take the same path, that implies a much smaller degree of choice during the

rest of the exploration. Even if some differences can be seen during the exploration phase,

every run leads to the same suboptimal solution. In conclusion the tests demonstrated

that this strategy is too deterministic and dependent on the specific maze to be suitable

for a real exploration task.

8.2. Random walk.

Another strategy was a random strategy with utility learning, in the beginning all the

productions have the same utility, which can change during the run according to the

utility rewards gathered during the exploration. A positive utility reward is given by the

action of finding the goal, with a negative reward for each dead-end.

Figure 8.2.: Left: Mean performance of the random walk in the four test environments
Right: Solution quality of the random walk strategy in the four environments.

The graph on the left of Fig. 8.2 shows that, for each of the four environments, the

model behave in the same way. This result can be reasonably expected from a random

walk that makes no differences between the four mazes, because of its aleatory nature.

On the other hand the quality of the solution differs from a maze to the other, as seen

in the right of Fig. 8.2 .
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This difference is the outcome of the learning process in the navigation algorithm.

Even if the performance changes between the four environment, it is always much better

(more than an order of magnitude) than the initial performance.

Figure 8.3.: Human (left) and model performance (right) with random walk, the curves have a
correlation of 0,962 and 0,954.

The comparison in Fig. 8.3 places side by side the mean performance of the human

subjects and of the model. The results are grouped by labyrinth’s class, to be comparable

to the results of the Büchner experiment [BHW09]. The time needed to find the goal in

the center of the maze is almost identical to the one scored by the human beings, while

the humans outperform the model in finding the goal on the edge. The human behavior

shows an advantage over our implementation in solving the second class of problem.

This result can be explained by the lean of the humans, as proved by our reference

experiment, to prefer the perimeter strategy while exploring an unknown environment.

Because of this reason, a third strategy was implemented and tested.
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8.3. Gaussian perimeter strategy.

Figure 8.4.: The Gaussian error.

The goal here is to implement a system that prefers the perimeter strategy but is also

shows some degree of randomness. The implementation provides for a random utility

bonus applied to the three choices (Fig. 8.4), the more desirable is the action to perform,

the higher the center of the Gaussian will be. The three curves, identifying the action of

turning left, going straight on and turning right, are centered respectively in 0, 2 and 4.

In practice, the action of turning right will be the favorite and the action of turning left

the least likely to happen.

This bonus is added to the standard production’s utility by the mean of the :utility-offsets

function [Bot04, p.187].

(defun calculate-utility (prod_name)

(case prod_name

(’go-north-random

(if (eq *userDir* *west*);

(+ (act-r-noise *s*) 4) ;right

(if (eq *userDir* *north*);

(+ (act-r-noise *s*) 2) ;straight

(act-r-noise *s*) ;left

)))

...
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The Gaussian functions are calculated by the act-r-noise function [Bot04, p.138]

with parameter s = 0.5, that correspond to a variance σ2 = 0, 82246.

The calculate utility function is set as the :utility offset function, which is called

every time that the utility value of a production must be computed. The number given

as output by this function is then added to the actual utility value of the production.

The production with the higher utility value will then be fired by the production system.

The function is invoked with, in its parameter, the name of the current production to

rate. Taking as example the “go-north-random” production, the function reads the

current user direction and generates a Gaussian curve with the “act-r-noise” function.

If the current direction is “west”, the action of turning north will be the favorite

because implies a turn right, for this reason the center of the Gaussian curve is shifted to 4.

In case the current direction is “north”, the action of going north will need no turns and

the Gaussian curve will be centered in 2. The last case, when the current direction is

“east”, will get no offset in its utility bonus.

The Gaussian curves intersect one to the other, this means that there is some probability

that one action will be preferred over another action that is normally considered better.

This behavior normally occurs also in the human reasoning, which is never deterministic.

Varying the breadth of the curves, this probability changes. The tests report that, with

this probability distribution, the perimeter strategy is chosen 47% of the time in the first

maze and the 43% in the second.

Figure 8.5.: Gaussian perimeter strategy performance. Left: Human - Right: model.

The comparison in Fig. 8.5 shows that, compared to the previous strategy, the initial

results are more similar to the one registered with humans. In particular the first run in

the edge configuration is now comparable to the human result.

In that particular case, the model shows a behavior very different from the expected:

while the humans find quickly a good solution and keep following that path, eventually
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making small improvements, the model goes on with exploration and register a worse

score in the second run. In the end the learning mechanism brings the solution back to

the same initial value or to a better one.

Figure 8.6.: Solution quality of the Gaussian perimeter strategy in the four environments.

The graph in Fig. 8.6 highlights the solution’s quality. The solution found in the first

maze is almost optimal, and all the values are quite close to the humans results.

Unlike the random walk, this strategy performs always better in the first maze, in both

edge and central configurations. This result can be explained by the structure of the

labyrinth, in fact the goal is placed in the top-right, an agent that uses a simple perimeter

strategy can find the goal with an almost optimal path.

Having a good solution in the beginning makes easier for the model to find its way through

the maze, with less need for further exploration.

While low performance is registered in the second maze in edge configuration.

Again the maze structure can explain this result: The goal is placed on the top-left

edge, in a position difficult to reach for the implemented strategy. That implies more

exploration in the first run and so less possibility of finding a shorter solution and

improving the performance.
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9. Conclusions

This experiment’s main achievement is to have demonstrated that ACT-R can be

successfully used to control the navigation of a mobile robot.

We applied a bottom-up method starting with a restricted number of sensors and

computational power relying more on the cognitive aspects of ACT-R.

Our cognitive model is not only able to navigate in a labyrinth, but also to learn from

its experience and improve its performance. Also this experiment showed that, despite

using a simple robot with limited perceptions, is possible to reach human performance or

do even better. There is no need for complex architectures and expensive hardware to

successfully model the human behavior.

A disadvantage of this simplicity is the need of a more strictly defined environment,

the model is not ready for navigating outside its labyrinth, in the real world.

Obtaining more flexibility is not a matter of model but a matter of perceptions:

with a more complex hardware that is able to handle more complex perceptions,

the same model will theoretically be still able to handle the extra complexity and show

the same level of performance.

Even if the results have proved to be satisfying, there is still room for improvement.

The most practical improvement is to enhance the robot’s overall design:

The use of different and more sophisticated sensor will allow the algorithm to be further

improved, for example the use of a webcam could allow the model to recognize landmarks

visually, from a distance, and act consequently (e.g. recognize and avoid a dead-end).

Improvement of this type are countless and depends entirely on the available budget.

Another useful improvement is to study a new, better designed chassis. It will contribute

in reducing the odometry and measurement errors, which are still a problem during the

execution in a real environment.

For example the sensors could be mounted on a rotating turret that allow then to measure

in all the directions without the need of the robot to turn itself.

A sensor like a compass could allow the robot to measure its absolute orientation, a really

important information for the navigation in open terrains that will let the robot to move

not only along the Cartesian axis, but with every angle.

81



Stefano Bennati 9. Conclusions

On the Artificial Intelligence point of view a valuable improvement is to move to a

generalized reinforcement learning algorithm [RN03, p.777]. A generalized approach

differs in the internal representation: it drops the tabular Q-function, that encodes the

performance of every state, in favor of a parametric Q-function. A parametric Q-function

has the advantage of compressing the information needed to handle with huge state spaces,

also it allows to generalize and do inference from known to unknown states. With the help

of a Policy Search algorithm the Q-function’s parameter can be learned and optimized

until they produce good performances.

On the other hand, the cognitive model could be as well further enhanced by

implementing a better simulation of human memory, for example adding uncertainty

in the memorization process. Humans tend to remember less efficiently complicated

information or to confuse similar information. At the moment the model has a perfect

memory and the only source of error is the ambiguity between junctions.

A first step in this direction is to introduce a utility threshold under which the chunks

cannot be retrieved, some tests in this direction have been executed, but to get valuable

results more work is needed on the parameter’s tuning.

A further step is to introduce a difficulty level that makes memorization more difficult.

Humans tend to have more difficulties in memorizing a complex information than a simple

information, for example is more likely to forget the length of a corridor in a junction

with four corridors then in a junction with only one corridor.

The complexity level could be proportional, for example, to the number of open ways in

that junction or the length of the corridors.

Another interesting enhancement is to allow the model to randomly forget or switch

junction performance, as well as the user direction, like humans tend to do when the

quantity of information they have to remember is too great

This feature could be easily implemented using the similarity function embedded in

ACT-R. This function, already used in the distance calculation process, allows to set

some similarity between chunks, the bigger the similarity the higher the chance that the

retrieval process will load the wrong chunk.
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A. Source code

A.1. nxt-motor

(defvar *engine-velocity* (/ *max-speed* 4) "The default engine velocity")

(defvar portlist ’(:a :b :c)) ;the available engine ports

#+:packaged-actr (in-package :act-r)

#+(and :clean-actr (not :packaged-actr) :ALLEGRO-IDE) (in-package :cg-user)

#-(or (not :clean-actr) :packaged-actr :ALLEGRO-IDE) (in-package :cl-user)

(require-compiled "DMI" "ACT-R6:support;dmi")

(require-compiled "GENERAL-PM" "ACT-R6:support;general-pm")

;;;; ---------------------------------------------------------------------- ;;;;

;;;; module definition

;;;; ---------------------------------------------------------------------- ;;;;

(defstruct nxt-motor velocity c-engine r-engine l-engine busy)

(defun nxt-motor-create (model-name)

(declare (ignore model-name))

(make-nxt-motor))

(defun nxt-motor-reset (nxt)

(declare (ignore nxt))

(chunk-type move-forward duration)

(chunk-type move-backwards duration)

(chunk-type turn-right duration)

(chunk-type turn-left duration)

(chunk-type activate-motor port velocity direction duration) ;direction t=forward nil=backwards

(chunk-type deactivate-motor port)

(chunk-type engine port)

(chunk-type emergency-stop)

)

(defun nxt-motor-delete (nxt)

(declare (ignore nxt))

)

(defun nxt-motor-params (nxt param) ;getter and setter for the parameters

(if (consp param)

(case (car param)

(:busy

(setf (nxt-motor-busy nxt) (cdr param)))
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(:velocity

(setf (nxt-motor-velocity nxt) (cdr param)))

(:c-engine

(case (cdr param)

(#\a

(setf (nxt-motor-c-engine nxt) (first portlist)))

(#\b

(setf (nxt-motor-c-engine nxt) (second portlist)))

(#\c

(setf (nxt-motor-c-engine nxt) (third portlist)))

(t (print-warning "Wrong parameter"))

));case

(:r-engine

(case (cdr param)

(#\a

(setf (nxt-motor-r-engine nxt) (first portlist)))

(#\b

(setf (nxt-motor-r-engine nxt) (second portlist)))

(#\c

(setf (nxt-motor-r-engine nxt) (third portlist)))

(t (print-warning "Wrong parameter"))

));case

(:l-engine

(case (cdr param)

(#\a

(setf (nxt-motor-l-engine nxt) (first portlist)))

(#\b

(setf (nxt-motor-l-engine nxt) (second portlist)))

(#\c

(setf (nxt-motor-l-engine nxt) (third portlist)))

(t (print-warning "Wrong parameter"))

))

(t (print-warning "Wrong parameter")));case

(case param

(:busy

(nxt-motor-busy nxt))

(:velocity

(nxt-motor-velocity nxt))

(:c-engine

(case (nxt-motor-c-engine nxt)

(:a #\a)

(:b #\b)

(:c #\c)

));case

(:l-engine

(case (nxt-motor-l-engine nxt)

(:a #\a)

(:b #\b)

(:c #\c)

));case

(:r-engine

(case (nxt-motor-r-engine nxt)

(:a #\a)

(:b #\b)
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(:c #\c)

));case

(t (print-warning "Wrong parameter")))

))

(defun nxt-motor-requests (instance buffer-name chunk-spec)

(if (nxt-motor-busy instance)

(model-warning "Request made to the ~S buffer while the nxt-motor module was busy. New request ignored."

buffer-name)

(let

((setf (nxt-motor-busy instance) t))

(case buffer-name

(nxt-move

(case (chunk-spec-chunk-type chunk-spec)

(move-forward

(nxt-move-forward instance (third (car (chunk-spec-slot-spec chunk-spec ’duration))))) ;returns

the value of the duration buffer in the request (chunk-spec)

(move-backwards

(nxt-move-backwards instance (third (car (chunk-spec-slot-spec chunk-spec ’duration)))))

(turn-right

(nxt-turn-right instance (third (car (chunk-spec-slot-spec chunk-spec ’duration)))))

(turn-left

(nxt-turn-left instance (third (car (chunk-spec-slot-spec chunk-spec ’duration)))))

(activate-motor

(nxt-movement (third (car (chunk-spec-slot-spec chunk-spec ’port)))

(third (car (chunk-spec-slot-spec chunk-spec ’velocity)))

(third (car (chunk-spec-slot-spec chunk-spec ’direction)))

(third (car (chunk-spec-slot-spec chunk-spec ’duration)))))

(deactivate-motor ;TODO useful??

(nxt-movement (third (car (chunk-spec-slot-spec chunk-spec ’port))) :brake t 0))

(emergency-stop (nxt-stop-motors))

)

)

)

)

)

)

(defun nxt-motor-queries (nxt buffer query value) ;handles the queries to the buffers

(declare (ignore buffer))

(case query ;type of the query

(state

(case value

(busy (nxt-motor-busy nxt))

(free (not (nxt-motor-busy nxt)))

(error nil)

(t (print-warning "Bad state query to the ~s buffer" buffer))))

(velocity

(nxt-motor-velocity nxt))

(t (print-warning "Invalid query ~s to the ~s buffer" query buffer))

))

;;;; ---------------------------------------------------------------------- ;;;;
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;;;; special nxt functions

;;;; ---------------------------------------------------------------------- ;;;;

(defun nxt-movement (port velocity direction duration) ;port is a keyword, element of portlist

(if direction

(motor port velocity)

(let ((vel (- velocity))) ;else

(motor port vel))

)

(sleep duration)

(motor port :brake)

)

(defun nxt-move-forward (nxt duration)

(motor (nxt-motor-l-engine nxt) *engine-velocity*)

(motor (nxt-motor-r-engine nxt) *engine-velocity*)

(sleep duration))

(defun nxt-move-backwards (nxt duration)

(setq vel (- *engine-velocity*))

(motor (nxt-motor-l-engine nxt) vel)

(motor (nxt-motor-r-engine nxt) vel)

(sleep duration))

(defun nxt-turn-right (nxt duration)

(setq vel (- *engine-velocity*))

(motor (nxt-motor-l-engine nxt) *engine-velocity*)

(motor (nxt-motor-r-engine nxt) vel)

(sleep duration))

(defun nxt-turn-left (nxt duration)

(setq vel (- *engine-velocity*))

(motor (nxt-motor-l-engine nxt) vel)

(motor (nxt-motor-r-engine nxt) *engine-velocity*)

(sleep duration))

(defun nxt-stop-motors ()

(motor-reset))

(define-module-fct ’nxt-motor ;name

’(nxt-move) ;buffers

(list

(define-parameter :busy

:documentation "state"

:default-value nil

:owner t)

(define-parameter :c-engine ;cannot set a keyword as default value

:documentation "nxt’s third engine, normally not used for movement"

:default-value #\a

:valid-test (lambda (x) (characterp x))

:warning "a character"

:owner t)

(define-parameter :r-engine

:documentation "nxt’s right engine"
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:default-value #\b

:valid-test (lambda (x) (characterp x))

:warning "a character"

:owner t)

(define-parameter :l-engine

:documentation "nxt’s left engine"

:default-value #\c

:valid-test (lambda (x) (characterp x))

:warning "a character"

:owner t)

(define-parameter :velocity

:documentation "max rotation velocity"

:default-value *engine-velocity*

:valid-test (lambda (x) (integerp x))

:warning "an integer"

:owner t)

)

:request ’nxt-motor-requests

:query ’nxt-motor-queries

:version "0.1"

:documentation "Motor module for the lego nxt brick"

:creation ’nxt-motor-create

:reset ’nxt-motor-reset

:delete ’nxt-motor-delete

:params ’nxt-motor-params

)
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A.2. nxt-touch

#+:packaged-actr (in-package :act-r)

#+(and :clean-actr (not :packaged-actr) :ALLEGRO-IDE) (in-package :cg-user)

#-(or (not :clean-actr) :packaged-actr :ALLEGRO-IDE) (in-package :cl-user)

(require-compiled "DMI" "ACT-R6:support;dmi")

(require-compiled "GENERAL-PM" "ACT-R6:support;general-pm")

;;;; ---------------------------------------------------------------------- ;;;;

;;;; module definition

;;;; ---------------------------------------------------------------------- ;;;;

(defstruct nxt-touch port)

(defun nxt-touch-create (model-name)

(declare (ignore model-name))

(make-nxt-touch))

(defun nxt-touch-reset (nxt)

(declare (ignore nxt))

)

(defun nxt-touch-delete (nxt)

(declare (ignore nxt))

)

(defun nxt-touch-params (nxt param) ;getter and setter for the parameters

(if (consp param)

(case (car param)

(:touch-port

(setf (nxt-touch-port nxt) (cdr param))

(dolist (var (nxt-touch-port nxt))

(nxt-define-sensor var)

)

; (princ "And the ports are: ")

; (prin1 (nxt-touch-port nxt))

)

(t (print-warning "Wrong parameter")))

(case param

(:touch-port

(nxt-touch-port nxt))

(t (print-warning "Wrong parameter")))

))

(defun nxt-touch-queries (nxt buffer query value) ;handles the queries to the buffers

(declare (ignore buffer))

(case query ;type of the query

(state

(case value

(busy nil)

(free t)

(error nil)

(t (print-warning "Bad state query to the ~s buffer" buffer))
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);case

);state

(touched ;did it touch something?

(setq result

(dolist (var (nxt-touch-port nxt)) ;for every sensor

(if (touched? var) ;if it’s pressed

(return t))

);dolist

);setq

(case value

(true result) ;true if it touched

(false (not result)) ;false if it touched

(t (print-warning "Bad state query to the ~s buffer" buffer))

);case

);touched

(sensor ;did the specified sensor touch something?

(if (member value (nxt-touch-port nxt)) ;checks if the specified port has a sensor attached

(touched? value); reads from the sensor

(print-warning "No touch sensor defined for port ~s, define a new sensor first" value)

);if

);sensor

(sensors ;did ALL the specified sensors touch something? the value must be a list!

(dolist (var value t)

(if (member var (nxt-touch-port nxt)) ;if the port is valid

(if (not (touched? var)) ;if one sensor is not pressed finish and return nil

(return nil))

(return (print-warning "No touch sensor defined for port ~s, define a new sensor first" var)) ;

print-warning returns nil

);if

);dolist

);TODO useful???

(t (print-warning "Invalid query ~s to the ~s buffer" query buffer))

))

;;;; ---------------------------------------------------------------------- ;;;;

;;;; special nxt functions

;;;; ---------------------------------------------------------------------- ;;;;

(defun nxt-define-sensor (port)

(touch-on port)

)

(define-module-fct ’nxt-touch ;name

’((nxt-touched nil nil (touched sensor sensors) nil)) ;buffers, need to define the query

the buffer will respond to

(list

(define-parameter :touch-port

:documentation "port to which the sensors are connected"

:default-value ’(1 2)

:valid-test (lambda (x) (and

(listp x) ;must be a list

(dolist (var x t)

(if (or (not (numberp var)) (< var 1) (> var 4))
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(return nil)) ;must be a number between 1 and 4

)

))

:warning "a list of valid ports"

:owner t

)

)

;; :request ’nxt-touch-requests

:query ’nxt-touch-queries

:version "0.1"

:documentation "Touch sensor module for the lego nxt brick"

:creation ’nxt-touch-create

:reset ’nxt-touch-reset

:delete ’nxt-touch-delete

:params ’nxt-touch-params

)
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A.3. nxt-vision

#+:packaged-actr (in-package :act-r)

#+(and :clean-actr (not :packaged-actr) :ALLEGRO-IDE) (in-package :cg-user)

#-(or (not :clean-actr) :packaged-actr :ALLEGRO-IDE) (in-package :cl-user)

(require-compiled "DMI" "ACT-R6:support;dmi")

(require-compiled "GENERAL-PM" "ACT-R6:support;general-pm")

(defvar *previous-color* 0)

(defun poll-sensor (instance) ; a process who checks periodically the sensor and draws a colored letter on

the experiment window

(setq port (nxt-vision-port instance))

(let* ((number (colorsensor (nxt-vision-port instance)))

(color (case number

(1 ’black)

(2 ’blue)

(3 ’green)

(4 ’yellow)

(5 ’red)

(6 ’white)

(t (print-warning "Error reading the color, setting it to black") ’black)

);case

);color

);let-params

(if (or (not (eq color *previous-color*)) ;if the color changes

(eq number 2)) ;of if it-s blue, better to insist if it’s close to the wall

(let ()

(clear-exp-window)

(add-text-to-exp-window :text "O" :color color)

(proc-display :clear t)

);let

);if

(setq *previous-color* color)

);let

)

(defstruct nxt-vision port)

(defun nxt-vision-create (model-name)

(declare (ignore model-name))

(make-nxt-vision))

(defun nxt-vision-reset (nxt)

(declare (ignore nxt))

(define-chunks (color-chunk isa visual-object))

(chunk-type light turn)

)

(defun nxt-vision-delete (nxt)

(declare (ignore nxt))

)

x



Stefano Bennati A. Source code

(defun nxt-vision-requests (instance buffer-name chunk-spec)

(case buffer-name

(nxt-visual

(case (chunk-spec-chunk-type chunk-spec)

(light ;used to turn on and off the sensor

(case (third (car (chunk-spec-slot-spec chunk-spec ’turn)))

(on (colorsensor-white (nxt-vision-port instance))

(setq polling-event (schedule-periodic-event 50 ’poll-sensor :maintenance t :time-in-ms t :

params (list instance)))

)

(off (colorsensor-off (nxt-vision-port instance))

(delete-event polling-event) ;stop polling

)

(t (print-warning "Wrong parameter for the \"light\" request"))

);case

);light

(t (print-warning "wrong chunk-type ~s for the buffer ~s" (chunk-spec-chunk-type chunk-spec)

buffer-name))

);case

);nxt-visual

(t (print-warning "requested the wrong buffer ~s" buffer-name))

);case

)

(defun nxt-vision-queries (nxt buffer query value) ;handles the queries to the buffers

(declare (ignore buffer))

(case query ;type of the query

(state

(case value

(busy nil)

(free t)

(error nil)

(t (print-warning "Bad state query to the ~s buffer" buffer))

);case

);state

(t (print-warning "Invalid query ~s to the ~s buffer" query buffer))

))

(defun nxt-vision-params (nxt param) ;getter and setter for the parameters

(if (consp param)

(case (car param)

(:vision-port

(setf (nxt-vision-port nxt) (cdr param))

);port

(t (print-warning "Wrong parameter"))

);case

(case param

(:vision-port

(nxt-vision-port nxt))

(t (print-warning "Wrong parameter"))

);case

))
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;;;; ---------------------------------------------------------------------- ;;;;

;;;; special nxt functions

;;;; ---------------------------------------------------------------------- ;;;;

(define-module-fct ’nxt-vision ;name

’(nxt-visual) ;buffers

(list

(define-parameter :vision-port

:documentation "port to which the sensor is connected"

:default-value 3

:valid-test (lambda (x)

(and (integerp x) (> x 0) (< x 5)))

:warning "a valid port number"

:owner t)

)

:request ’nxt-vision-requests

:query ’nxt-vision-queries

:version "0.7"

;;changelog

;;v 0.7 now the display is refreshed only if there is a change of color, or if the color is blue: trying

to save computational time

;; and go closer to the human behaviour

;; corrected a bug into the condition in poll-sensor

;;v 0.6 removed the fake device and now using the standard act-r device (a window) and drawing a colored

letter on that

;; removed the polling process and implemented the same thing through the "schedule-periodic-event"

act-r function

;;v 0.5 = 0.2 + 0.3

;;v 0.3 rollbacked to v0.1 and modified the buffer stuffing so that resemble the normal act-r behaviour

;; instead of stuffing a chunk directly in the visual buffer it creates a new visicon device and

wites in it an oval whose color is the one the sensor reads

;;v 0.2 added multiprocessing, now the polling to the color sensor is made by another process

;; this process is created when the sensor is turned on and killed when it’s turned off

;; when the function recognizes a change of color, or that the color is blue, stuffs a new chunk into

the vision buffer

;; the request visual-location has been removed

:documentation "Motor module for the lego nxt brick"

:creation ’nxt-vision-create

:reset ’nxt-vision-reset

:delete ’nxt-vision-delete

:params ’nxt-vision-params

)
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A.4. nxt-distance

#+:packaged-actr (in-package :act-r)

#+(and :clean-actr (not :packaged-actr) :ALLEGRO-IDE) (in-package :cg-user)

#-(or (not :clean-actr) :packaged-actr :ALLEGRO-IDE) (in-package :cl-user)

;;documentation

;;this module reads the distance from the nxt’s ultrasonic sensor

;;when a request is made the module reads an integer value from the sensor and produces as output a chunk in

it’s own buffer

;;the chunk is of type "obstacle" and has a slot called "distance" whose value is the one given by the

sensor

;;

;;because the function (set-chunk-slot-value) accepts as parameter only strings the module creates a string

containing the command

;;to execute, including the right numeric value, and then evaluates the string

;;after the value has been changed it issues a buffer stuffing in it’s own buffer

(require-compiled "DMI" "ACT-R6:support;dmi")

(require-compiled "GENERAL-PM" "ACT-R6:support;general-pm")

(defstruct nxt-distance port)

(defun nxt-distance-create (model-name)

(declare (ignore model-name))

(make-nxt-distance))

(defun nxt-distance-reset (nxt)

(declare (ignore nxt))

(chunk-type obstacle distance counter)

(define-chunks (read isa obstacle))

)

(defun nxt-distance-delete (nxt)

(declare (ignore nxt))

)

(defun nxt-distance-requests (instance buffer-name chunk-spec)

(case buffer-name

(nxt-distance

(case (chunk-spec-chunk-type chunk-spec)

(obstacle

(setq measures 0.0)

(dotimes (x 10) ;make 10 reads

(setf measures (+ measures (distance (nxt-distance-port instance))))

);dotimes

(setf measures (/ measures 10.0));mean value

(EVAL (READ-FROM-STRING (format nil "(set-chunk-slot-value read distance ~D)" measures))) ;

reading the distance

(EVAL (READ-FROM-STRING (format nil "(set-chunk-slot-value read counter ~D)" (third (car (

chunk-spec-slot-spec chunk-spec ’counter)))))) ;setting the counter

(schedule-event-relative 0.1 ’set-buffer-chunk ;scheduling the action to fill the buffer, so that

it will be available for the next production
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:priority :min

:params ’(nxt-distance read :requested t) ;put into the $1 buffer the $2 chunk

:output nil)

);distance

(t (print-warning "wrong chunk-type ~s for the buffer ~s" (chunk-spec-chunk-type chunk-spec)

buffer-name))

);case

);nxt-distance

(t (print-warning "requested the wrong buffer ~s" buffer-name))

);case

)

(defun nxt-distance-queries (nxt buffer query value) ;handles the queries to the buffers

(declare (ignore buffer))

(case query ;type of the query

(state

(case value

(busy nil)

(free t)

(error nil)

(t (print-warning "Bad state query to the ~s buffer" buffer))

);case

);state

(t (print-warning "Invalid query ~s to the ~s buffer" query buffer))

))

(defun nxt-distance-params (nxt param) ;getter and setter for the parameters

(if (consp param)

(case (car param)

(:distance-port

(setf (nxt-distance-port nxt) (cdr param))

(distance-on (nxt-distance-port nxt))

);port

(t (print-warning "Wrong parameter"))

);case

(case param

(:distance-port

(nxt-distance-port nxt))

(t (print-warning "Wrong parameter"))

);case

))

;;;; ---------------------------------------------------------------------- ;;;;

;;;; special nxt functions

;;;; ---------------------------------------------------------------------- ;;;;

(define-module-fct ’nxt-distance ;name

’(nxt-distance) ;buffers

(list

(define-parameter :distance-port

:documentation "port to which the sensor is connected"

:default-value 4

:valid-test (lambda (x)

(and (integerp x) (> x 0) (< x 5)))
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:warning "a valid port number"

:owner t)

)

:request ’nxt-distance-requests

:query ’nxt-distance-queries

:version "0.1"

:documentation "module for the lego nxt brick’s ultrasonic sensor"

:creation ’nxt-distance-create

:reset ’nxt-distance-reset

:delete ’nxt-distance-delete

:params ’nxt-distance-params

)
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A.5. Simulator

;;changelog

;;v 0.2 added the fast_raw option, if the variable is false it will draw the dynamic map

(setf *mazeList* (list

;; index 0: first maze, goal at edge position

(make-array ’(26 19) ;; define the number of rows and columns

;; here comes the actual content: x=wall, -=accessible, g=goal, d=door

;; rooms have to be rectangular!

:initial-contents’(

(x x x x x x x x x x x x x x x x x x x)

(x x x - * - x x x x x x - - j - g x x)

(x x x x d x x x x x x x x x d x d x x)

(x - x - - - x x x x x - d - j x - x x)

(x * d - j - d - - - d j x * j d j x x)

(x - x - - - x x x x x - d - j x - x x)

(x x x x d x x x x x x x x x d x x x x)

(x x x x - * x x x x x x - - j - - x x)

(x x x x - - x x x x x x d x x x d x x)

(x x x x x d x x x x x x - j - j - x x)

(x x x - - j - - x x x x x d x d x x x)

(x - x - - * - - x - - - x - x - x x x)

(x - x - - - - - x d x d x - x j d - x)

(x * d j * - * j d j x j d j x - x - x)

(x - x - - - - - x d x d x - x - x - x)

(x - x d x x x d x - * - x - x j d - x)

(x x x - - j - - x - j - x d x d x x x)

(x x x x x d x x x x d x x - j - x x x)

(x x x x x - x x x x - x x x d x x x x)

(x - * - x - x x x x d x x x - - - * x)

(x * - - d - x x - - * - x x * - - - x)

(x - - - x x x x - - - - x x - - - - x)

(x x d x x x x x x x x x x x x x d x x)

(x - - - - - - - - * - - - - - - - - x)

(x * - - - - - - - s - - - - - - - * x)

(x x x x x x x x x x x x x x x x x x x))

)

) ;; list

) ;; setf

;; the distance of the optimal path

(setf *mazeOptDist* (list 29.052809 23.727083 44.988667 32.03491))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; TOOLS ;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun init (num try)

(setf index num)

(setf window_name (format nil "maze ~D run ~D" num try))

(setf *mazeArray* (nth index *mazeList*))

(setf *shortest* (nth index *mazeOptDist*))

(setf width (array-dimension *mazeArray* 1))

(setf height (array-dimension *mazeArray* 0))
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(setf *north* 0)

(setf *east* 1)

(setf *south* 2)

(setf *west* 3)

(reset_sym)

;; the way that the user took

(setf *userTrace* (list *userPos*))

(setf *listPAO* ())

(setf textSize 8)

(setf last_visloc ())

(setq fast_draw t)

(setq *previous-color* 0)

)

(defun reset_sym ()

(setf *userPos* (getStartPos)) ;;first is the row, second the column

;; the direction in which the user looks: N/E/S/W = 0/1/2/3/

(setf *userDir* *north*)

(setf *userTrace* (list *userPos*))

)

;; search start position from left bottom

(defun getStartPos ()

(getStartPosHelper *mazeArray* (- (array-dimension *mazeArray* 0) 1) 0)

;’(34 14)

)

(defun getStartPosHelper (arr row col)

(cond

((>= col (array-dimension arr 1)) ;; too far right

(getStartPosHelper arr (- row 1) 0)

)

((< row 0) ;; too far up, no start position

(print "ERROR: no start position found")

nil

)

((string= (aref arr row col) "S")

(list row col)

)

(t

(getStartPosHelper arr row (+ col 1))

)

)

)

(defun checkPosition (row col)

;; userPos should be inside maze

(if (not (or (< col 0) (< row 0) (> col (- (array-dimension *mazeArray* 1) 1)) (> row (- (array-dimension

*mazeArray* 0) 1))))

t ;(or (string= (aref *mazeArray* row col) "D") (not *initDone*))

nil)

)

(defun getDistance (traceList dist)
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(let ((cur (pop traceList)))

(if (null traceList)

dist

(getDistance traceList (+ dist (euclidianDistance cur (first traceList))))

)

)

)

(defun getPAO ()

(* 100 (/ (- (getDistance *userTrace* 0) *shortest*) *shortest*))

)

(defun euclidianDistance (pos1 pos2)

(sqrt (+ (square (- (first pos1) (first pos2))) (square (- (second pos1) (second pos2)))))

)

(defun square (num)

(* num num)

)

(defun copy-array (arr)

(let ((dims (array-dimensions arr)))

(adjust-array

(make-array dims :displaced-to arr)

dims)

)

)

(defun listSum (sum theList)

(if (null theList)

sum

(listSum (+ (pop theList) sum) theList)

)

)

(defun listMean (theList)

(/ (listSum 0 theList) (list-length theList) 1.0)

)

(defun switchmodel ()

(setf *actr-enabled-p* (not *actr-enabled-p*))

(format t "ACT-R is ~Denabled.~%" (if *actr-enabled-p* "" "not "))

)

(defun help ()

(format t "~%~%MAZES: (format: index=number,targetPosition)~%0=first,edge; 1=first,center; 2=second,edge;

 3=second,center~%")

(format t "~%Start experiment: (e maxTime doRealTime mazeIndex verbose)~%Start series of experiments: (

sampleDataInd numExperiments mazeIndex maxTime)~%")

(format t "~%Switch ACT-R model ON/OFF: (switchmodel)~%~%Currently, ACT-R is ~Denabled.~%" (if *

actr-enabled-p* "" "not "))

(format t "~%To show this help again, type (help)~%")

)
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; FUNCTIONS ;;

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(defun next_cell ()

(case *userDir*

(0 ;north

(setf row (- (car *userPos*) 1))

(setf col (cadr *userPos*))

(if (checkPosition row col)

(list row col)

*userPos*)

)

(1 ;east

(setf row (car *userPos*))

(setf col (+ (cadr *userPos*) 1))

(if (checkPosition row col)

(list row col)

*userPos*))

(2 ;south

(setf row (+ (car *userPos*) 1))

(setf col (cadr *userPos*))

(if (checkPosition row col)

(list row col)

*userPos*))

(3 ;west

(setf row (car *userPos*))

(setf col (- (cadr *userPos*) 1))

(if (checkPosition row col)

(list row col)

*userPos*))

(t (prin1 "ERROR"))

)

)

(defun draw_user_pos_fast ()

(clear-exp-window)

(add-text-to-exp-window :text "O" :color color

:x (* (cadr *userPos*) textSize)

:y (* (car *userPos*) textSize)

:width textSize)

(proc-display :clear t)

)

(defun draw_user_pos ()

(setf coords (next_cell)) ;read the coords of the cell it’s facing

(setf cell (aref *mazeArray* (car coords) (cadr coords)))

(case cell

(’s

(add-text-to-exp-window :text "S"

:x (+

(* width (* textSize 2))

(* (cadr coords) (* textSize 2)))

;(* (cadr coords) (* textSize 2))

xix



Stefano Bennati A. Source code

:y (* (car coords) (* textSize 2))

:width textSize

:color ’green)

; )

)

(’g

(add-text-to-exp-window :text "G"

:x (+

(* width (* textSize 2))

(* (cadr coords) (* textSize 2)))

;(* (cadr coords) (* textSize 2))

:y (* (car coords) (* textSize 2))

:width textSize

:color ’red)

; )

)

(’x

(add-text-to-exp-window :text "X"

:x (+

(* width (* textSize 2))

(* (cadr coords) (* textSize 2)))

;(* (cadr coords) (* textSize 2))

:y (* (car coords) (* textSize 2))

:width textSize

:color ’blue)

; )

)

(’*

(add-text-to-exp-window :text "X"

:x (+

(* width (* textSize 2))

(* (cadr coords) (* textSize 2)))

;(* (cadr coords) (* textSize 2))

:y (* (car coords) (* textSize 2))

:width textSize

:color ’blue)

; )

)

(’j

(add-text-to-exp-window :text "J"

:x (+

(* width (* textSize 2))

(* (cadr coords) (* textSize 2)))

;(* (cadr coords) (* textSize 2))

:y (* (car coords) (* textSize 2))

:width textSize

:color ’yellow)

; )

)

(’-

(add-text-to-exp-window :text "-"

:x (+

(* width (* textSize 2))

(* (cadr coords) (* textSize 2)))
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;(* (cadr coords) (* textSize 2))

:y (* (car coords) (* textSize 2))

:width textSize

:color ’white)

; )

)

(’d

(add-text-to-exp-window :text "-"

:x (+

(* width (* textSize 2))

(* (cadr coords) (* textSize 2)))

;(* (cadr coords) (* textSize 2))

:y (* (car coords) (* textSize 2))

:width textSize

:color ’white)

; )

)

(t (prin1 "WRONG SYMBOL"))

);case

(remove-items-from-exp-window last_visloc)

(setf last_visloc (add-text-to-exp-window :text "O" :color color

:x (* (cadr *userPos*) (* textSize 2))

:y (* (car *userPos*) (* textSize 2))

:width textSize))

)

(defun move_forward ()

(when (not (eq (read_color) ’blue)) ;if the next cell is not a wall

(if (not fast_draw)

(draw_user_pos)

);if

(setf *userPos* (next_cell)) ; it can move forward

(when (eq ’d (aref *mazeArray* (car *userPos*) (cadr *userPos*)))

(push *userPos* *userTrace*)

);if

(when (eq ’g (aref *mazeArray* (car *userPos*) (cadr *userPos*)))

(push *userPos* *userTrace*)

);if

);when

)

(defun move_backwards ()

(turn_right)

(turn_right)

(move_forward)

(turn_right)

(turn_right)

)

(defun turn_right ()

(if (eq *userDir* *west*)

(setf *userDir* *north*)

(setf *userDir* (+ *userDir* 1))

)
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)

(defun turn_left ()

(if (eq *userDir* *north*)

(setf *userDir* *west*)

(setf *userDir* (- *userDir* 1))

)

)

(defun read_color ()

(setf coords (next_cell)) ;read the coords of the cell it’s facing

(setf cell (aref *mazeArray* (car coords) (cadr coords)))

(case cell

(’s ’green)

(’g ’red)

(’x ’blue)

(’* ’blue)

(’j ’yellow)

(’- ’white)

(’d ’white)

(t (prin1 "WRONG SYMBOL"))

);case

)

(defun get_distance ()

(setf dist 0)

(setf bak *userPos*)

(while (not (eq (read_color) ’blue))

(setf dist (+ dist 1))

(setf *userPos* (next_cell))

)

(setf *userPos* bak)

dist

)
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B. ACT-R Model

(setq *performances* ()) ;the number of steps to complete every run

(setq *minDist* 0) ;the minimum distance under which a wall is detected. for the simulator 0, robot 30

(setq *stepFwd* 0.1) ;how much go forward at every step. for the simulator 0.1

(setq *stepTurn* 1) ;how much turn at every turn. for the simulator 1.0, robot 1.1

(setq *forgetRate* 1) ;the bigger, the quicker junctions are forgotten

(setq *similThresh* 0) ;the max difference in the distances over which a junction won’b be retrieved

(setq *utility_thresh* 5.0) ;with a threshold of 1 a way utility of 50 will have the same probability, under

50 the known way is more probable and over 50 the exploration is prefered

;;gaussian parameters

(setq *s* 0.5)

(setq *frontCenter* 2)

(setq *rightCenter* 4)

;waypoints

(setq *wplist* ’((-2 -2 -2 -2)))

(setq *wp1index* 0)

(setq *wp2index* 1)

(defun next-waypoint ()

(setq *wp2index* (1+ *wp2index*))

(setq lng (- (length *wplist*) 1))

(if (> *wp2index* lng)

(let ()

(setq *wp1index* (1+ *wp1index*))

(if (>= *wp1index* lng)

(let ()

(setq *wp1index* lng)

(setq *wp2index* 0)

nil

);let

(setq *wp2index* (1+ *wp1index*))

);if

);let

t

))

(defun reduce_activ (n1 e1 s1 w1 n2 e2 s2 w2)

(with-output-to-string (*STANDARD-OUTPUT*) ;suppress output

(setq real-name (EVAL (READ-FROM-STRING

(format nil "(sdm isa waypoint = n1 ~s = e1 ~s = s1 ~s = w1 ~s = n2 ~s = e2 ~s = s2 ~s = w2 ~s)"

n1 e1 s1 w1 n2 e2 s2 w2))))

(EVAL (READ-FROM-STRING (format nil "(set-base-levels ( ~s ~D))" (car real-name) 1)))))

(defun get-n1 ()

(car (nth *wp1index* *wplist*)))
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(defun get-e1 ()

(cadr (nth *wp1index* *wplist*)))

(defun get-s1 ()

(caddr (nth *wp1index* *wplist*)))

(defun get-w1 ()

(cadddr (nth *wp1index* *wplist*)))

(defun get-n2 ()

(car (nth *wp2index* *wplist*)))

(defun get-e2 ()

(cadr (nth *wp2index* *wplist*)))

(defun get-s2 ()

(caddr (nth *wp2index* *wplist*)))

(defun get-w2 ()

(cadddr (nth *wp2index* *wplist*)))

(defun turn-right (direction)

(case direction

(’north ’east)

(’east ’south)

(’south ’west)

(’west ’north)

))

(defun turn-left (direction)

(case direction

(’north ’west)

(’west ’south)

(’south ’east)

(’east ’north)

))

(defun turn-back (direction)

(case direction

(’north ’south)

(’east ’west)

(’south ’north)

(’west ’east)

))

(defun get-movement (start end) ;which movement must i do to go from start direction to end direction?

(case start

(’north

(case end

(’north ’front)

(’east ’right)

(’west ’left)

)
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)

(’east (case end

(’east ’front)

(’south ’right)

(’north ’left)

)

)

(’south (case end

(’south ’front)

(’west ’right)

(’east ’left)

)

)

(’west (case end

(’west ’front)

(’north ’right)

(’south ’left)

)

)

(t nil) ;matches with the values "closed" and (in case of an error) "empty"

))

(defun give-rewards (past current) ;counter of the last and current goals

(with-output-to-string (*STANDARD-OUTPUT*) ;suppress output

(setq junction-list (sdm isa junction)) ;save all the crossings

(setq name-last (EVAL (READ-FROM-STRING (format nil "(CAR (SDM ISA GOAL = COUNTER ~s))" past))))

(setq time-last (EVAL (READ-FROM-STRING (format nil "(CaAR (SDP ~s :creation-time))" name-last)))) ;

creation time of the last goal

);with-output-to-string

(setq last-run ()) ;the list containing the junctions of the last run

(dolist (junction junction-list t) ;selects the chunks that have been used in the last run

(setq element-time nil)

(with-output-to-string (*STANDARD-OUTPUT*) (setf element-time (EVAL (READ-FROM-STRING (format nil "(

CaaAR (SDP ~s :reference-list))" junction)))))

(if (not element-time) ;it haven’t been referenced yet

(with-output-to-string (*STANDARD-OUTPUT*) (setf element-time (EVAL (READ-FROM-STRING (format nil "(

CaAR (SDP ~s :creation-time))" junction)))))

);if

(if (> element-time time-last) ;the current chunk belongs to the last run

(let ( (new_performance (round (- (mp-time) element-time))) ;difference between the actual (goal)

time and the chunk’s execution time

(old_performance (EVAL (READ-FROM-STRING (format nil "(chunk-slot-value ~s performance)" junction

)))))

(if (and (numberp old_performance) ;if the value is nil it isn’t a valid junction, no need to

update the value

(not (eq old_performance 9999)) ;it isn’t a dead end

(or (eq old_performance -1) ;if it wasn’t rated yet

(< new_performance old_performance))) ;the new value is better than the last one

(EVAL (READ-FROM-STRING (format nil "(set-chunk-slot-value ~s performance ~D)" junction

new_performance)))

);if

);let

; (setf last-run (append last-run (list junction)))

);if
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))

;; When in a junction the model retrieves all the chunks about that junction that there are in dm.

;; If the retrieval fails it means that a way is not being tried yet, or it’s a wall.

;; If the junction is new, or there’s a wall in one side, the model won’t fire the best-* productions

because the performances in the goal buffer will be 9999

;; If a chunk matches, one of those performances will take a positive value, less than 9999.

;; In that case both the productions best-* and go-*-random can fire, an offset is applied on the utility

calculation

;; this offset is a random positive number proportional to the disance from the goal, minus a threshold.

;; If the known way brings quickly to the goal, the utility of the best-* production will likely be a

positive number, so the model will follow that way, ignoring the unexplored one

;; If the known way is a long way to the goal, the utility will likely be a negative number, so the model

will explore the new way

(defun calculate-utility (prod_name) ;add to the utility a random number, in inverse proportion to the

distance from the goal

(case prod_name

(’best-front

(with-output-to-string (*STANDARD-OUTPUT*) (setq utility

(EVAL (READ-FROM-STRING (format nil "(chunk-slot-value ~s front)" ;read the utility in that

direction

(car (BUFFER-CHUNK GOAL)) ;from the chunk in the goal buffer

)))))

(- (act-r-random (/ 100.0 utility)) ;a random positive number between 1/100 and 100

*utility_thresh*) ;the threshold under which the random production is choosen

)

(’best-right

(with-output-to-string (*STANDARD-OUTPUT*) (setq utility

(EVAL (READ-FROM-STRING (format nil "(chunk-slot-value ~s right)" ;read the utility in that

direction

(car (BUFFER-CHUNK GOAL)) ;from the chunk in the goal buffer

)))))

(- (act-r-random (/ 100.0 utility)) ;a random positive number between 1/100 and 100

*utility_thresh*) ;the threshold under which the random production is choosen

)

(’best-left

(with-output-to-string (*STANDARD-OUTPUT*) (setq utility

(EVAL (READ-FROM-STRING (format nil "(chunk-slot-value ~s left)" ;read the utility in that

direction

(car (BUFFER-CHUNK GOAL)) ;from the chunk in the goal buffer

)))))

( - (act-r-random (/ 100.0 utility)) ;a random positive number between 1/100 and 100

*utility_thresh*) ;the threshold under which the random production is choosen

)

;implementing the perimeter strategy

(’go-north-random

(if (eq *userDir* *west*);

(+ (act-r-noise *s*) *rightCenter*) ;right

(if (eq *userDir* *north*);

(+ (act-r-noise *s*) *frontCenter*) ;straight

(act-r-noise *s*) ;left
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);if

);if

)

(’go-east-random

(if (eq *userDir* *north*)

(+ (act-r-noise *s*) *rightCenter*) ;right

(if (eq *userDir* *east*);

(+ (act-r-noise *s*) *frontCenter*) ;straight

(act-r-noise *s*) ;left

);if

);if

)

(’go-south-random

(if (eq *userDir* *east*)

(+ (act-r-noise *s*) *rightCenter*) ;right

(if (eq *userDir* *south*);

(+ (act-r-noise *s*) *frontCenter*) ;straight

(act-r-noise *s*) ;left

);if

);if

)

(’go-west-random

(if (eq *userDir* *south*)

(+ (act-r-noise *s*) *rightCenter*) ;right

(if (eq *userDir* *west*);

(+ (act-r-noise *s*) *frontCenter*) ;straight

(act-r-noise *s*) ;left

);if

);if

)

))

(define-model reinforced_learning

(install-device (open-exp-window window_name ;"Model’s view"

:visible t

:width (+ 10 (* (array-dimension *mazeArray* 1) (* 4 textSize)))

:height (+ 100 (* (array-dimension *mazeArray* 0) (* 2 textSize)))

))

(sgp :trace-detail low

:esc t ;activation enabled

:er t ;random choice of chunks with same activation

:le 0 ;latency exponent parameter, set to 0 to avoid underflows with high activation values

:bll 0.2 ;activates learning: needed to record the references of a chunk

:blc 5

:act nil ;activation trace disabled

:ol 1 ;enables the recording of chunk references

:ul t :v t ;enables utility learning

; :rt 0.1

:ult nil ;utility trace

:utility-offsets calculate-utility ;adds a random component to the utility calculation

:test-feats nil ;speeds up the draw process in proc-display

; :epl t ;production compilation)
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(chunk-type planning state)

(chunk-type goal counter)

(chunk-type fork direction front right left) ;support chunk, used to store temporarly useful information

(chunk-type junction turn north east south west performance)

(chunk-type ext-junction turn north east south west performance front right left)

(chunk-type movement direction counter)

;possible chunks for the direction slot

(chunk-type north)

(chunk-type east)

(chunk-type south)

(chunk-type west)

(chunk-type forwards)

;waypoint calculation

(chunk-type waypoint ; values of -1 indicate the goal and values of -2 indicate the start point

;first waypoint

n1 e1 s1 w1

;second waypoint

n2 e2 s2 w2

distance)

(chunk-type Ausgabe Unterstatus

;first waypoint

n1 e1 s1 w1

;second waypoint

n2 e2 s2 w2)

(chunk-type Antwort Wert Entfernung

;first waypoint

n1 e1 s1 w1

;second waypoint

n2 e2 s2 w2)

(chunk-type Zahl Name Wert Nachfolger) ; Typ zur Repraesentierung der Zahlen.

(chunk-type Addition Wert1 Wert2 Ergebniss)

(add-dm (goal isa planning) (start isa goal counter 0) (move isa movement direction north counter 0)

(Eins isa Zahl Name "Eins" Wert 1 Nachfolger "Zwei")

(Zwei isa Zahl Name "Zwei" Wert 2 Nachfolger "Drei")

(Drei isa Zahl Name "Drei" Wert 3 Nachfolger "Vier")

(Vier isa Zahl Name "Vier" Wert 4 Nachfolger "Fuenf")

(Fuenf isa Zahl Name "Fuenf" Wert 5 Nachfolger "Sechs")

(Sechs isa Zahl Name "Sechs" Wert 6 Nachfolger "Sieben")

(Sieben isa Zahl Name "Sieben" Wert 7 Nachfolger "Acht")

(Acht isa Zahl Name "Acht" Wert 8 Nachfolger "Neun")

(Neun isa Zahl Name "Neun" Wert 9 Nachfolger "Zehn")

(Zehn isa Zahl Name "Zehn" Wert 10 Nachfolger "Elf")

(Elf isa Zahl Name "Elf" Wert 11 Nachfolger "Zwoelf")

(Zwoelf isa Zahl Name "Zwoelf" Wert 12 Nachfolger "Dreizehn")

(Dreizehn isa Zahl Name "Dreizehn" Wert 13 Nachfolger "Vierzehn")

(Vierzehn isa Zahl Name "Vierzehn" Wert 14 Nachfolger "Fuenfzehn")

(Fuenfzehn isa Zahl Name "Fuenfzehn" Wert 15 Nachfolger "Sechzehn")

(Sechzehn isa Zahl Name "Sechzehn" Wert 16 Nachfolger "Siebzehn")

(Siebzehn isa Zahl Name "Siebzehn" Wert 17 Nachfolger "Achtzehn")

(Achtzehn isa Zahl Name "Achtzehn" Wert 18 Nachfolger "Neunzehn")

(Neunzehn isa Zahl Name "Neunzehn" Wert 19 Nachfolger "Zwanzig")

(Zwanzig isa Zahl Name "Zwanzig" Wert 20 Nachfolger "Einundzwanzig")

(Einundzwanzig isa Zahl Name "Einundzwanzig" Wert 21 Nachfolger "Zweiundzwanzig")
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(Zweiundzwanzig isa Zahl Name "Zweiundzwanzig" Wert 22 Nachfolger "Dreiundzwanzig")

(Dreiundzwanzig isa Zahl Name "Dreiundzwanzig" Wert 23 Nachfolger "Vierundzwanzig")

(Vierundzwanzig isa Zahl Name "Vierundzwanzig" Wert 24 Nachfolger "Fuenfundzwanzig")

(Fuenfundzwanzig isa Zahl Name "Fuenfundzwanzig" Wert 25 Nachfolger "Sechundzwanzig")

(Sechsundzwanzig isa Zahl Name "Sechsundzwanzig" Wert 26 Nachfolger "Siebenundzwanzig")

(Siebenundzwanzig isa Zahl Name "Siebenundzwanzig" Wert 27 Nachfolger "Achtundzwanzig")

(Achtundzwanzig isa Zahl Name "Achtundzwanzig" Wert 28 Nachfolger "Neunundzwanzig")

(Neunundzwanzig isa Zahl Name "Neunundzwanzig" Wert 29 Nachfolger "Dreisig")

(Dreisig isa Zahl Name "Dreisig" Wert 30 Nachfolger "Einunddreisig")

(Einunddreisig isa Zahl Name "Einunddreisig" Wert 31 Nachfolger "Zweiunddreisig")

(Zweiunddreisig isa Zahl Name "Zweiunddreisig" Wert 32 Nachfolger "Dreiunddreisig")

(Dreiunddreisig isa Zahl Name "Dreiunddreisig" Wert 33 Nachfolger "Vierunddreisig")

(Vierunddreisig isa Zahl Name "Vierunddreisig" Wert 34 Nachfolger "Fuenfunddreisig")

(Fuenfunddreisig isa Zahl Name "Fuenfunddreisig" Wert 35 Nachfolger "Sechunddreisig")

(Sechsunddreisig isa Zahl Name "Sechsunddreisig" Wert 36 Nachfolger "Siebenunddreisig")

(Siebenunddreisig isa Zahl Name "Siebenunddreisig" Wert 37 Nachfolger "Achtunddreisig")

(Achtunddreisig isa Zahl Name "Achtunddreisig" Wert 38 Nachfolger "Neununddreisig")

(Neununddreisig isa Zahl Name "Neununddreisig" Wert 39 Nachfolger "Vierzig")

(Vierzig isa Zahl Name "Vierzig" Wert 40 Nachfolger "Einundvierzig")

(Einundvierzig isa Zahl Name "Einundvierzig" Wert 41 Nachfolger "Zweiundvierzig")

(Zweiundvierzig isa Zahl Name "Zweiundvierzig" Wert 42 Nachfolger "Dreiundvierzig")

(Dreiundvierzig isa Zahl Name "Dreiundvierzig" Wert 43 Nachfolger "Vierundvierzig")

(Vierundvierzig isa Zahl Name "Vierundvierzig" Wert 44 Nachfolger "Fuenfundvierzig")

(Fuenfundvierzig isa Zahl Name "Fuenfundvierzig" Wert 45 Nachfolger "Sechundvierzig")

(Sechsundvierzig isa Zahl Name "Sechsundvierzig" Wert 46 Nachfolger "Siebenundvierzig")

(Siebenundvierzig isa Zahl Name "Siebenundvierzig" Wert 47 Nachfolger "Achtundvierzig")

(Achtundvierzig isa Zahl Name "Achtundvierzig" Wert 48 Nachfolger "Neunundvierzig")

(Neunundvierzig isa Zahl Name "Neunundvierzig" Wert 49 Nachfolger "Fuenfzig")

(Fuenfzig isa Zahl Name "Fuenfzig" Wert 50 Nachfolger "Einundfuenfzig")

(Einundfuenfzig isa Zahl Name "Einundfuenfzig" Wert 51 Nachfolger "Zweiundfuenfzig")

(Zweiundfuenfzig isa Zahl Name "Zweiundfuenfzig" Wert 52 Nachfolger "Dreiundfuenfzig")

(Dreiundfuenfzig isa Zahl Name "Dreiundfuenfzig" Wert 53 Nachfolger "Vierundfuenfzig")

(Vierundfuenfzig isa Zahl Name "Vierundfuenfzig" Wert 54 Nachfolger "Fuenfundfuenfzig")

(Fuenfundfuenfzig isa Zahl Name "Fuenfundfuenfzig" Wert 55 Nachfolger "Sechundfuenfzig")

(Sechsundfuenfzig isa Zahl Name "Sechsundfuenfzig" Wert 56 Nachfolger "Siebenundfuenfzig")

(Siebenundfuenfzig isa Zahl Name "Siebenundfuenfzig" Wert 57 Nachfolger "Achtundfuenfzig")

(Achtundfuenfzig isa Zahl Name "Achtundfuenfzig" Wert 58 Nachfolger "Neunundfuenfzig")

(Neunundfuenfzig isa Zahl Name "Neunundfuenfzig" Wert 59 Nachfolger "Sechzig")

(Sechzig isa Zahl Name "Sechzig" Wert 60 Nachfolger "Einundsechzig")

(Einundsechzig isa Zahl Name "Einundsechzig" Wert 61 Nachfolger "Zweiundsechzig")

(Zweiundsechzig isa Zahl Name "Zweiundsechzig" Wert 62 Nachfolger "Dreiundsechzig")

(Dreiundsechzig isa Zahl Name "Dreiundsechzig" Wert 63 Nachfolger "Vierundsechzig")

(Vierundsechzig isa Zahl Name "Vierundsechzig" Wert 64 Nachfolger "Fuenfundsechzig")

(Fuenfundsechzig isa Zahl Name "Fuenfundsechzig" Wert 65 Nachfolger "Sechundsechzig")

(Sechsundsechzig isa Zahl Name "Sechsundsechzig" Wert 66 Nachfolger "Siebenundsechzig")

(Siebenundsechzig isa Zahl Name "Siebenundsechzig" Wert 67 Nachfolger "Achtundsechzig")

(Achtundsechzig isa Zahl Name "Achtundsechzig" Wert 68 Nachfolger "Neunundsechzig")

(Neunundsechzig isa Zahl Name "Neunundsechzig" Wert 69 Nachfolger "Siebzig")

(Siebzig isa Zahl Name "Siebzig" Wert 70 Nachfolger "Einundsiebzig")

(Einundsiebzig isa Zahl Name "Einundsiebzig" Wert 71 Nachfolger "Zweiundsiebzig")

(Zweiundsiebzig isa Zahl Name "Zweiundsiebzig" Wert 72 Nachfolger "Dreiundsiebzig")

(Dreiundsiebzig isa Zahl Name "Dreiundsiebzig" Wert 73 Nachfolger "Vierundsiebzig")

(Vierundsiebzig isa Zahl Name "Vierundsiebzig" Wert 74 Nachfolger "Fuenfundsiebzig")
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(Fuenfundsiebzig isa Zahl Name "Fuenfundsiebzig" Wert 75 Nachfolger "Sechundsiebzig")

(Sechsundsiebzig isa Zahl Name "Sechsundsiebzig" Wert 76 Nachfolger "Siebenundsiebzig")

(Siebenundsiebzig isa Zahl Name "Siebenundsiebzig" Wert 77 Nachfolger "Achtundsiebzig")

(Achtundsiebzig isa Zahl Name "Achtundsiebzig" Wert 78 Nachfolger "Neunundsiebzig")

(Neunundsiebzig isa Zahl Name "Neunundsiebzig" Wert 79 Nachfolger "Achtzig")

(Achtzig isa Zahl Name "Achtzig" Wert 80 Nachfolger "Einundachtzig")

(Einundachtzig isa Zahl Name "Einundachtzig" Wert 81 Nachfolger "Zweiundachtzig")

(Zweiundachtzig isa Zahl Name "Zweiundachtzig" Wert 82 Nachfolger "Dreiundachtzig")

(Dreiundachtzig isa Zahl Name "Dreiundachtzig" Wert 83 Nachfolger "Vierundachtzig")

(Vierundachtzig isa Zahl Name "Vierundachtzig" Wert 84 Nachfolger "Fuenfundachtzig")

(Fuenfundachtzig isa Zahl Name "Fuenfundachtzig" Wert 85 Nachfolger "Sechundachtzig")

(Sechsundachtzig isa Zahl Name "Sechsundachtzig" Wert 86 Nachfolger "Siebenundachtzig")

(Siebenundachtzig isa Zahl Name "Siebenundachtzig" Wert 87 Nachfolger "Achtundachtzig")

(Achtundachtzig isa Zahl Name "Achtundachtzig" Wert 88 Nachfolger "Neunundachtzig")

(Neunundachtzig isa Zahl Name "Neunundachtzig" Wert 89 Nachfolger "Neunzig")

(Neunzig isa Zahl Name "Neunzig" Wert 90 Nachfolger "Einundneunzig")

(Einundneunzig isa Zahl Name "Einundneunzig" Wert 91 Nachfolger "Zweiundneunzig")

(Zweiundneunzig isa Zahl Name "Zweiundneunzig" Wert 92 Nachfolger "Dreiundneunzig")

(Dreiundneunzig isa Zahl Name "Dreiundneunzig" Wert 93 Nachfolger "Vierundneunzig")

(Vierundneunzig isa Zahl Name "Vierundneunzig" Wert 94 Nachfolger "Fuenfundneunzig")

(Fuenfundneunzig isa Zahl Name "Fuenfundneunzig" Wert 95 Nachfolger "Sechundneunzig")

(Sechsundneunzig isa Zahl Name "Sechsundneunzig" Wert 96 Nachfolger "Siebenundneunzig")

(Siebenundneunzig isa Zahl Name "Siebenundneunzig" Wert 97 Nachfolger "Achtundneunzig")

(Achtundneunzig isa Zahl Name "Achtundneunzig" Wert 98 Nachfolger "Neunundneunzig")

(Neunundneunzig isa Zahl Name "Neunundneunzig" Wert 99 Nachfolger "Hundert"))

(p boot

=goal>

isa planning

state nil

==>

=goal>

state move

+retrieval> ;fill in the retrieval buffer for the next production

isa movement

- direction nil

+nxt-visual>

isa light

turn on

;create the first waypoint

+imaginal>

isa waypoint

n1 -2

e1 -2

s1 -2

w1 -2

n2 nil

e2 nil

s2 nil

w2 nil

distance 0 ;actual counter value

);boot

;;;-----------------------------------------------------------------------
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;;;------------------------------Moving forward---------------------------

;;;-----------------------------------------------------------------------

(p move ;start a new movement

=goal>

isa planning

state move

=retrieval>

isa movement

counter =num ;number of the last movement

?visual-location>

buffer empty ;no communications from the visual sensor

?imaginal>

state free ;the last movement completed

?retrieval>

state free

==>

=goal>

state track

!bind! =next (+ =num 1)

!bind! =move *stepFwd*

=retrieval>

direction nil

counter nil

+imaginal> ;ask to the imaginal module to create a new chunk

isa movement

direction forwards ;with this direction

counter =next ;and the next number

+nxt-move>

ISA move-forward

duration =move)

(p track-movement ;saves in declarative memory the new movement

=goal>

ISA planning

state track

=imaginal> ;now it will be saved in dm

isa movement

?imaginal>

state free ;the last movement completed

?retrieval>

state free

==>

=goal>

state move ;start from the beginning

+retrieval> ;filling the buffer for the next production

isa movement

- direction nil)

;;;-----------------------------------------------------------------------

;;;---------------------------finds an obstacle---------------------------

;;;-----------------------------------------------------------------------

(p close ;approaches the wall
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=goal>

isa planning

state move

=visual-location> ;something in sight

ISA visual-location

=retrieval>

isa movement

?imaginal>

state free ;the last movement completed

?retrieval>

state free

?visual>

state free

==>

=goal>

state close ;stop and investigate

=retrieval>

+visual>

ISA move-attention

screen-pos =visual-location

+nxt-move>

isa emergency-stop)

(p avoid ;avoids the curve

=goal>

isa planning

state close

=visual> ;if it’s a wall

isa text

value "O"

= color blue

=retrieval>

isa movement

counter =count

?visual>

state free

?retrieval>

state free

==>

=goal>

state avoid-curve

=retrieval>

direction nil

counter nil

!bind! =move *stepTurn*

+nxt-move>

ISA turn-right

duration =move

+retrieval> ;load the last infos about the user direction

isa movement

- direction forwards

- direction nil)

(p junction ;there’s a junction
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=goal>

isa planning

state close

=visual> ;if it’s a wall

isa text

value "O"

= color yellow

=retrieval>

isa movement

counter =num

?visual>

state free

?retrieval>

state free

==>

=goal>

state approach-junction

!bind! =next (+ =num 1)

!bind! =move *stepFwd*

=retrieval>

direction nil

counter nil

+imaginal> ;ask to the counter module to create a new chunk

isa movement

direction forwards ;with this direction

counter =next ;and the next number

+nxt-move>

ISA move-forward

duration =move)

(p approach-junction ;go one step forward to reach the junction and start measuring

=goal>

ISA planning

state approach-junction

=imaginal> ;now it will be saved in dm

isa movement

counter =count

?imaginal>

state free ;the last movement completed

=retrieval>

isa movement

==>

=goal>

state start-measuring

=retrieval>

direction nil

counter nil

+imaginal>

isa junction

performance =count ;save the value temporary

+nxt-move>

isa emergency-stop)

(p false-alarm
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=goal>

isa planning

state close

=visual> ;if it’s not a wall

isa text

value "O"

- color blue

- color red

- color yellow

?visual>

state free

=retrieval>

isa movement

==>

=goal>

state move

=retrieval>

; direction nil

; counter nil

; +retrieval> ;filling the buffer for the next production

; isa movement

; - direction nil)

;;;-----------------------------------------------------------------------

;;;---------------------------finds a goal--------------------------------

;;;-----------------------------------------------------------------------

(p recognise-goal ;recognises a goal

=goal>

isa planning

state close

=visual> ;if it’s a goal

isa text

value "O"

= color red

?visual>

state free

=retrieval>

isa movement

==>

=goal>

state goal

+nxt-move>

ISA emergency-stop

=retrieval>)

(p goal2

=goal>

isa planning

state goal

=retrieval>

isa movement

counter =num ;number of the last movement

?visual-location>
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buffer empty ;no communications from the visual sensor

?imaginal>

state free ;the last movement completed

?retrieval>

state free

==>

=goal>

state track-goal

=retrieval>

direction nil

counter nil

!bind! =next (+ =num 1)

+imaginal> ;ask to the counter module to create a new chunk

isa goal

counter =next ;and the next number

+retrieval>

isa goal

- counter nil

; !eval! (print-warning "PAO: ")

; !eval! (prin1 (getPAO))

; !eval! (setf *listPAO* (append *listPAO* (list (getPAO))))

!eval! (reset_sym) ;reset the user position and orientation in the simulated labyrinth)

(p track-goal ;stores the goal in dm, prints an output in console and starts the simulation from the

beginning

=goal>

isa planning

state track-goal

=retrieval>

isa goal

counter =last-goal

=imaginal> ;now it will be saved in dm

isa goal

counter =current-goal

?retrieval>

state free

==>

=goal>

state take-my-time

=retrieval>

counter nil

+imaginal>

isa movement

direction north ;reset the user orientation in dm

counter =current-goal

+retrieval> ;retrieve the last incomplete waypoint

isa waypoint

- n1 nil

- e1 nil

- s1 nil

- w1 nil

n2 nil

e2 nil

s2 nil
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w2 nil

- distance nil

!eval! (print-warning "Simulation completed in ~D steps" (- =current-goal =last-goal))

!eval! (setf *performances* (append *performances* (list (- =current-goal =last-goal))))

!eval! (give-rewards =last-goal =current-goal))

(p take-my-time

=goal>

isa planning

state take-my-time

=imaginal>

isa movement ;saving in dm

counter =count ;current counter

=retrieval>

isa waypoint

distance =old_count

==>

!bind! =dist (- =count =old_count)

!bind! =n1 (get-n1)

!bind! =e1 (get-e1)

!bind! =s1 (get-s1)

!bind! =w1 (get-w1)

!bind! =n2 (get-n2)

!bind! =e2 (get-e2)

!bind! =s2 (get-s2)

!bind! =w2 (get-w2)

+goal> ; Und aktualisiere den goal buffer.

isa Ausgabe

Unterstatus Suche_Direkt

n1 =n1

e1 =e1

s1 =s1

w1 =w1

n2 =n2

e2 =e2

s2 =s2

w2 =w2

=retrieval>

n2 -1

e2 -1

s2 -1

w2 -1

distance =dist

-retrieval>

!eval! (setq *wplist* (APPEND *WPLIST* ’((-1 -1 -1 -1))))

;create the first waypoint

+imaginal>

isa waypoint

n1 -2

e1 -2

s1 -2

w1 -2

n2 nil

e2 nil
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s2 nil

w2 nil

distance =count ;actual counter value

-imaginal>)

;;;-----------------------------------------------------------------------

;;;------------------------measuring the distances------------------------

;;;-----------------------------------------------------------------------

(p start-measuring

=goal>

isa planning

state start-measuring

=imaginal>

isa junction

performance =count

==>

=goal>

state measure-front

+retrieval> ;load the last infos about the user direction

isa movement

- direction forwards

- direction nil

+nxt-distance>

isa obstacle

counter nil

=imaginal> ;setting the default value for all the 4 slots to 0

north 0

east 0

south 0

west 0)

(p* measure-front ;measuring the front

=goal>

isa planning

state measure-front

=retrieval>

isa movement

direction =dir

=nxt-distance>

isa obstacle

distance =dist

=imaginal>

isa junction

==>

=goal>

state turn-right

=retrieval>

=imaginal> ;write the distance in the right slot

=dir =dist

!bind! =move *stepTurn*

+nxt-move>

ISA turn-right

duration =move)
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(p turn-right

=goal>

isa planning

state turn-right

=retrieval>

isa movement

=imaginal>

isa junction

==>

=goal>

state measure-right

=retrieval>

=imaginal>

+nxt-move>

ISA emergency-stop

+nxt-distance> ;reads the distance

isa obstacle

counter nil)

(p* measure-right ;measuring the right side

=goal>

isa planning

state measure-right

=retrieval>

isa movement

direction =dir ;the direction it was facing when it saw the obstacle

=imaginal>

isa junction

=nxt-distance>

isa obstacle

distance =dist

==>

=goal>

state turn-back

=retrieval>

!bind! =side (turn-right =dir)

=imaginal>

=side =dist

!bind! =move *stepTurn*

+nxt-move>

ISA turn-right

duration =move)

(p turn-back

=goal>

isa planning

state turn-back

=retrieval>

isa movement

=imaginal>

isa junction

==>

=goal>

state measure-back

=retrieval>
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=imaginal>

+nxt-move>

ISA emergency-stop

+nxt-distance> ;reads the distance

isa obstacle

counter nil)

(p* measure-back ;measuring the back

=goal>

isa planning

state measure-back

=retrieval>

isa movement

direction =dir ;the direction it was facing when it saw the obstacle

=imaginal>

isa junction

=nxt-distance>

isa obstacle

distance =dist

==>

=goal>

state turn-left

=retrieval>

!bind! =side (turn-back =dir)

=imaginal>

=side =dist

-nxt-distance>

!bind! =move *stepTurn*

+nxt-move>

ISA turn-right

duration =move)

(p turn-left

=goal>

isa planning

state turn-left

=retrieval>

isa movement

=imaginal>

isa junction

==>

=goal>

state measure-left

=retrieval>

=imaginal>

+nxt-move>

ISA emergency-stop

+nxt-distance> ;reads the distance

isa obstacle

counter nil)

(p* measure-left ;measuring the left side

=goal>

isa planning

state measure-left
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=retrieval>

isa movement

direction =dir ;the direction it was facing when it saw the obstacle

=imaginal>

isa junction

=nxt-distance>

isa obstacle

distance =dist

==>

=goal>

state load-last-waypoint ;retrieve-junction

=retrieval>

!bind! =side (turn-left =dir)

=imaginal>

=side =dist

-nxt-distance>

!bind! =move *stepTurn*

+nxt-move>

ISA turn-right

duration =move

+nxt-distance> ;reads the distance

isa obstacle

counter nil)

;;;-----------------------------------------------------------------------

;;;----------------------quick response functions-------------------------

;;;-----------------------------------------------------------------------

(p avoid-curve

=goal>

isa planning

state avoid-curve

=retrieval>

isa movement

==>

=goal>

state check-wall-right

=retrieval>

+nxt-move>

ISA emergency-stop

+nxt-distance> ;reads the distance

isa obstacle

counter nil)

(p free-right ;there is a wall in front and on the right side, tries left

=goal>

isa planning

state check-wall-right

!bind! =min *minDist*

=nxt-distance>

isa obstacle

> distance =min ;a wall is not present

=retrieval>

isa movement
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direction =dir

==>

=goal>

state track-turn

!bind! =side (turn-right =dir)

+imaginal> ;record the movement

isa junction

turn =side

=retrieval>

direction nil

counter nil

+retrieval>

isa movement

- direction nil)

(p wall-right ;there is a wall in front and on the right side, tries left

=goal>

isa planning

state check-wall-right

!bind! =min *minDist*

=nxt-distance>

isa obstacle

<= distance =min ;a wall is present

=retrieval>

isa movement

direction =dir

==>

=goal>

state check-wall-left

=retrieval>

!bind! =move (* 2 *stepTurn*)

+nxt-move>

ISA turn-left

duration =move)

(p check-wall-left ;turn left and stop

=goal>

isa planning

state check-wall-left

=retrieval>

isa movement

==>

=goal>

state wall-right

=retrieval>

+nxt-move>

ISA emergency-stop

+nxt-distance> ;reads the distance

isa obstacle

counter nil)

(p left-free ;there isn’t a wall on the left, proceeding this way

=goal>

isa planning

xli



Stefano Bennati B. ACT-R Model

state wall-right

!bind! =min *minDist*

=nxt-distance>

isa obstacle

> distance =min ;a wall is not present

=retrieval>

isa movement

direction =dir ;the direction it was facing

==>

=goal>

state track-turn

!bind! =side (turn-left =dir)

+imaginal> ;record the movement

isa junction

turn =side

=retrieval>

direction nil

counter nil

+retrieval>

isa movement

- direction nil)

(p going-back ;there is a wall on the left, going back

=goal>

isa planning

state wall-right

!bind! =min *minDist*

=nxt-distance>

isa obstacle

<= distance =min ;a wall is present

=retrieval>

isa movement

direction =dir ;coming from this direction

==>

=goal>

state dead-end

=retrieval>

direction nil

counter nil

+retrieval> ;the last junction before the dead-end

isa junction

- performance nil ;only a valid junction

;;it needs to mark the last called junction as dead end, not always it has value -1 because in case the way

has been followed a run before, but a dead end

;;is found then the robot boes back on its steps and if it founds a goal later, that junction will be marked

with a valid performance value

!bind! =move *stepTurn*

+nxt-move>

ISA turn-left

duration =move ;going back

!bind! =side (turn-back =dir)

+imaginal> ;record the movement

isa junction

turn =side)
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(p dead-end ;update the last action with a terrible performance value

=goal>

isa planning

state dead-end

=retrieval> ;the most recent junction chunk, the last choice it made

isa junction

=imaginal>

isa junction

==>

=goal>

state track-turn

=retrieval>

performance 9999 ;give a terrible performance value, next time it won’t turn this way

=imaginal>

+retrieval>

isa movement

- direction nil)

;;;-----------------------------------------------------------------------

;;;------------------------choose the direction---------------------------

;;;-----------------------------------------------------------------------

(p track-turn ;stores the decision in dm, needs as inputs the direction in the turn slot of the imaginal

buffer and the last counter in the counter slot of the retrieval buffer

=goal>

isa planning

state track-turn

=imaginal> ;store in dm

isa junction

turn =dir

=retrieval>

isa movement

counter =num

==>

=goal>

state track

=retrieval>

direction nil

counter nil

!bind! =next (+ =num 1)

+imaginal> ;ask to the imaginal module to create a new chunk

isa movement

direction =dir ;with this direction

counter =num ;=next ;and the next number

+nxt-move>

ISA emergency-stop)

(p load-last-waypoint ;loads the last uncomplete waypoint saved in memory

=goal>

isa planning

state load-last-waypoint

=imaginal>

isa junction
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=retrieval>

isa movement

==>

=goal>

state save-waypoint

=imaginal>

=retrieval>

direction nil

counter nil

+retrieval>

isa waypoint

- n1 nil

- e1 nil

- s1 nil

- w1 nil

n2 nil

e2 nil

s2 nil

w2 nil)

(p discard-waypoint ;loop detected

=goal>

isa planning

state save-waypoint

=imaginal>

isa junction

north =n

south =s

east =e

west =w

performance =count ;actual counter value

=retrieval>

isa waypoint

distance =old-count ;first junction’s counter value at creation time

n1 =n ;it’s going in circle

e1 =e

s1 =s

w1 =w

==>

=goal>

state retrieve-junction

=retrieval>

distance =count ;update the counter, don’t have to count the steps made to walk in circle

=imaginal>

+retrieval> ;load the last infos about the user direction

isa movement

- direction forwards

- direction nil)

(p save-waypoint ;updates the last waypoint with the second junction and the distance

=goal>

isa planning

state save-waypoint

=imaginal>
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isa junction

north =n2

south =s2

east =e2

west =w2

performance =count ;actual counter value

=retrieval>

isa waypoint

distance =old-count ;first junction’s counter value at creation time

n1 =n1

e1 =e1

s1 =s1

w1 =w1

!eval! (not (and (eq =n1 =n2) (eq =e1 =e2) (eq =s1 =s2) (eq =w1 =w2))) ;the two junctions aren’t the same

==>

=goal>

state duplicate-waypoint

!bind! =dist (- =count =old-count) ;calculate the correct distance

=retrieval> ;save the actual junction as second waypoint

n2 =n2

e2 =e2

s2 =s2

w2 =w2

distance =dist

!eval! (setq *wplist* (APPEND *WPLIST* ’((=n2 =e2 =s2 =w2))))

=imaginal> ;clear the chunk

north nil

south nil

east nil

west nil

performance nil

+imaginal> ;duplicate the chunk inverting the junctions

isa waypoint

n1 =n2

e1 =e2

s1 =s2

w1 =w2

n2 =n1

e2 =e1

s2 =s1

w2 =w1

distance =count ;need the value in the next production)

(p duplicate-waypoint ;updates the last waypoint with the second junction and the distance

=goal>

isa planning

state duplicate-waypoint

=imaginal> ;duplicated chunk

isa waypoint

distance =count

=retrieval> ;complete waypoint

isa waypoint

n2 =n

e2 =e
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s2 =s

w2 =w

distance =dist

==>

=goal>

state new-waypoint

=imaginal>

distance =dist ;set the correct distance

+imaginal> ;create the next waypoint

isa waypoint

n1 =n

e1 =e

s1 =s

w1 =w

distance =count ;actual counter

n2 nil

e2 nil

s2 nil

w2 nil)

(p new-waypoint ;saves the new waypoint and prepares the buffers for the next steps

=goal>

isa planning

state new-waypoint

=imaginal> ;new incomplete wayoint

isa waypoint

n1 =n

e1 =e

s1 =s

w1 =w

distance =count ;actual counter value

==>

=goal>

state retrieve-junction

+imaginal>

isa junction

north =n

south =s

east =e

west =w

performance =count ;actual counter value

+retrieval> ;load the last infos about the user direction

isa movement

- direction forwards

- direction nil)

(p retrieve-junction

=goal>

isa planning

state retrieve-junction

=imaginal>

isa junction

north =n

south =s
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east =e

west =w

performance =count ;actual counter value

=retrieval>

isa movement

direction =dir

==>

+goal>

isa ext-junction

turn 0

north empty

south empty

east empty

west empty

front 9999

right 9999

left 9999

performance 0

=imaginal>

turn =dir ;saving the information for future use

!bind! =side (turn-back =dir)

;calculate the axceptables ranges of distance

!bind! =nl (- =n *similThresh*)

!bind! =nh (+ =n *similThresh*)

!bind! =el (- =e *similThresh*)

!bind! =eh (+ =e *similThresh*)

!bind! =sl (- =s *similThresh*)

!bind! =sh (+ =s *similThresh*)

!bind! =wl (- =w *similThresh*)

!bind! =wh (+ =w *similThresh*)

=retrieval>

direction nil

counter nil

+retrieval>

isa junction

- turn =side ;match with all possible directions

;between val - thresh and val + thresh

>= north =nl

<= north =nh

>= south =sl

<= south =sh

>= east =el

<= east =eh

>= west =wl

<= west =wh

- performance nil ;only a direction it took before

+nxt-move>

ISA emergency-stop)

;;;-----------------------------------------------------------------------

;;;--------------------there is at least one match------------------------

;;;-----------------------------------------------------------------------

;;;this function calls itself until all the matches are retrieved, every time it saves which ways matched

already and delete them from the next request
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(p* junction-match ;found a match

=goal>

isa ext-junction

turn =back

north =v1

east =v2

south =v3

west =v4

performance =temp

=imaginal>

isa junction

turn =dir

=retrieval>

isa junction

turn =turn

north =n

south =s

east =e

west =w

performance =perf

- performance -1 ;not a loop

==>

!bind! =back (turn-back =dir)

!bind! =temp (get-movement =dir =turn)

=goal>

=turn =turn

=back closed ;mark the way it’s coming from as closed

=temp =perf ;saves the performance of the retrieved direction, in relative coordinates

=imaginal>

;deleting all the information, this way when the chunk will be removed from the buffer to make room for

the next request it won’t match with any junction

;this guarantees the reward mechanism to work correctly

=retrieval>

turn nil

north nil

south nil

east nil

west nil

performance nil

+retrieval> ;tries to retrieve another chunk

isa junction

- turn =v1 ;if they contain empty, if won’t have any effect. If that direction it has been explored, the

value will contain the name of that direction and will prevent another retrieval

- turn =v2

- turn =v3

- turn =v4

- turn =back

- turn =turn

north =n

south =s

east =e

west =w

- performance nil);only a direction it took before
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(p* loop-match ;found a loop, mark it as a closed way

=goal>

isa ext-junction

turn =back

north =v1

east =v2

south =v3

west =v4

performance =temp

=imaginal>

isa junction

turn =dir

=retrieval>

isa junction

turn =turn

north =n

south =s

east =e

west =w

performance -1

==>

!bind! =back (turn-back =dir)

!bind! =temp (get-movement =dir =turn)

=goal>

=turn =turn

=back closed ;mark the way it already took as closed, it will be handled later

=temp 10000

=imaginal>

;deleting all the information, this way when the chunk will be removed from the buffer to make room for

the next request it won’t match with any junction

;this guarantees the reward mechanism to work correctly

=retrieval>

turn nil

north nil

south nil

east nil

west nil

performance nil

+retrieval> ;tries to retrieve another chunk

isa junction

- turn =v1 ;if they contain empty, if won’t have any effect. If that direction it has been explored, the

value will contain the name of that direction and will prevent another retrieval

- turn =v2

- turn =v3

- turn =v4

- turn =back

- turn =turn

north =n

south =s

east =e

west =w

- performance nil);only a direction it took before

;;;-----------------------------------------------------------------------
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;;;--------------------one direction does not match-----------------------

;;;---------------------------check for walls-----------------------------

;;;-----------------------------------------------------------------------

;;when all matches has been retrieved this function checks all the direction still marked with "empty" and,

if a wall is present, marks them

(p north-wall

=goal>

isa ext-junction

north empty ;this way is free

!bind! =min *minDist*

=imaginal>

isa junction

turn =dir

<= north =min ;there is a wall on the front

?retrieval>

state free

?retrieval>

buffer empty ;no match

==>

=goal>

north closed

=imaginal>)

(p east-wall

=goal>

isa ext-junction

east empty ;this way is free

!bind! =min *minDist*

=imaginal>

isa junction

turn =dir

<= east =min ;there is a wall on the front

?retrieval>

state free

?retrieval>

buffer empty ;no match

==>

=goal>

east closed

=imaginal>)

(p west-wall

=goal>

isa ext-junction

west empty ;this way is free

!bind! =min *minDist*

=imaginal>

isa junction

turn =dir

<= west =min ;there is a wall on the front

?retrieval>

state free

?retrieval>

buffer empty ;no match
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==>

=goal>

west closed

=imaginal>)

(p south-wall

=goal>

isa ext-junction

south empty ;this way is free

!bind! =min *minDist*

=imaginal>

isa junction

turn =dir

<= south =min ;there is a wall on the front

?retrieval>

state free

?retrieval>

buffer empty ;no match

==>

=goal>

south closed

=imaginal>)

;;;-----------------------------------------------------------------------

;;;--------------------one direction does not match-----------------------

;;;---------------------choose a random direction-------------------------

;;;-----------------------------------------------------------------------

(p go-north-random

=goal>

isa ext-junction

north empty ;this way is free

!bind! =min *minDist*

=imaginal>

isa junction

turn =dir

- turn south ;can’t go back

> north =min ;there isn’t a wall on the front

north =n

south =s

east =e

west =w

?retrieval>

state free

?retrieval>

buffer empty ;no match

==>

!bind! =side (get-movement =dir ’north) ;the way it need to turn

+goal>

isa planning

state =side

=imaginal>)

(p go-east-random
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=goal>

isa ext-junction

east empty ;this way is free

!bind! =min *minDist*

=imaginal>

isa junction

turn =dir

- turn west ;can’t go back

> east =min ;there isn’t a wall on the front

north =n

south =s

east =e

west =w

?retrieval>

state free

?retrieval>

buffer empty ;no match

==>

!bind! =side (get-movement =dir ’east) ;the way it need to turn

+goal>

isa planning

state =side

=imaginal>)

(p go-south-random

=goal>

isa ext-junction

south empty ;this way is free

!bind! =min *minDist*

=imaginal>

isa junction

turn =dir

- turn north ;can’t go back

> south =min ;there isn’t a wall on the front

north =n

south =s

east =e

west =w

?retrieval>

state free

?retrieval>

buffer empty ;no match

==>

!bind! =side (get-movement =dir ’south) ;the way it need to turn

+goal>

isa planning

state =side

=imaginal>)

(p go-west-random

=goal>

isa ext-junction

west empty ;this way is free

!bind! =min *minDist*
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=imaginal>

isa junction

turn =dir

- turn east ;can’t go back

> west =min ;there isn’t a wall on the front

north =n

south =s

east =e

west =w

?retrieval>

state free

?retrieval>

buffer empty ;no match

==>

!bind! =side (get-movement =dir ’west) ;the way it need to turn

+goal>

isa planning

state =side

=imaginal>)

(p go-right

=goal>

isa planning

state right

=imaginal>

isa junction

turn =dir

?retrieval>

state free

==>

=goal>

state track-turn

+retrieval>

isa movement

- direction nil ;filling in the buffer for the next production

!bind! =side (turn-right =dir)

=imaginal>

turn =side ;record the movement, going right

performance -1

!bind! =move *stepTurn*

+nxt-move>

ISA turn-right

duration =move);turning right

(p go-left

=goal>

isa planning

state left

=imaginal>

isa junction

turn =dir

?retrieval>

state free

==>
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=goal>

state track-turn

+retrieval>

isa movement

- direction nil ;filling in the buffer for the next production

!bind! =side (turn-left =dir)

=imaginal>

turn =side ;record the movement, going left

performance -1

!bind! =move *stepTurn*

+nxt-move>

ISA turn-left

duration =move);turning left

(p go-front

=goal>

isa planning

state front

=imaginal>

isa junction

turn =dir

?retrieval>

state free

==>

=goal>

state track-turn

+retrieval>

isa movement

- direction nil ;filling in the buffer for the next production

=imaginal>

turn =dir ;record the movement, going right

performance -1)

;;;-----------------------------------------------------------------------

;;;---------------------there’s at least on match-------------------------

;;;-------------------------find the best way-----------------------------

;;;-----------------------------------------------------------------------

(p best-front ;decides which way is more promising

=goal>

isa ext-junction

; - north empty

; - east empty

; - south empty

; - west empty

right =r

left =l

;;front is preferred over right and left

<= front =r

<= front =l

< front 9999 ;can’t ba a dead end or a loop

=imaginal>

isa junction

turn =dir

north =n
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south =s

east =e

west =w

?retrieval>

state free

?retrieval>

buffer empty ;no match

==>

+goal>

isa planning

state go-best-dir

=imaginal>

; turn =dir

north nil

east nil

south nil

west nil

performance nil

+retrieval> ;retrieve the correct chunk

isa junction

turn =dir

north =n

south =s

east =e

west =w

- performance nil ;only a direction it took before

- performance 9999)

(p best-right ;decides which way is more promising

=goal>

isa ext-junction

; - north empty

; - east empty

; - south empty

; - west empty

front =f

left =l

;;right is preferred over left

< right =f

<= right =l

< right 9999 ;can’t ba a dead end or a loop

=imaginal>

isa junction

turn =dir

north =n

south =s

east =e

west =w

?retrieval>

state free

?retrieval>

buffer empty ;no match

==>

+goal>
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isa planning

state go-best-dir

!bind! =side (turn-right =dir)

=imaginal>

turn =side

north nil

east nil

south nil

west nil

performance nil

!bind! =move *stepTurn*

+nxt-move>

isa turn-right

duration =move

+retrieval> ;retrieve the correct chunk

isa junction

turn =side

north =n

south =s

east =e

west =w

- performance nil ;only a direction it took before

- performance 9999)

(p best-left ;decides which way is more promising

=goal>

isa ext-junction

; - north empty

; - east empty

; - south empty

; - west empty

right =r

front =f

< left =r

< left =f

< left 9999 ;can’t ba a dead end or a loop

=imaginal>

isa junction

turn =dir

north =n

south =s

east =e

west =w

?retrieval>

state free

?retrieval>

buffer empty ;no match

==>

+goal>

isa planning

state go-best-dir

!bind! =side (turn-left =dir)

=imaginal>

turn =side
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north nil

east nil

south nil

west nil

performance nil

!bind! =move *stepTurn*

+nxt-move>

isa turn-left

duration =move

+retrieval> ;retrieve the correct chunk

isa junction

turn =side

north =n

south =s

east =e

west =w

- performance nil ;only a direction it took before

- performance 9999)

(p go-best-dir

=goal>

isa planning

state go-best-dir

=retrieval> ;this chunk will now match with another in dm, so that in the end this chunk will be rewarded

isa junction

=imaginal>

isa junction

==>

=goal>

state track-turn

-retrieval>

=imaginal>

+retrieval>

isa movement ;needs to know the last counter

- direction nil)

;;;-----------------------------------------------------------------------

;;;----------------------------nowhere to go------------------------------

;;;-------------------------a loop is detected----------------------------

;;;-----------------------------------------------------------------------

(p loop-front

=goal>

isa ext-junction

;all other directions have been already explored, the only chance is to follow the loop

- north empty

- east empty

- south empty

- west empty

>= right 9999 ;even if there is a wall, instead of a dead-end, the value will be 9999

>= left 9999

front 10000

=imaginal>

isa junction
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turn =dir

?retrieval>

state free

?retrieval>

buffer empty ;no match

==>

+goal>

isa planning

state track-loop-front

=imaginal>

+retrieval>

isa junction

performance -1 ;the last way it took)

(p loop-right

=goal>

isa ext-junction

;all other directions have been already explored, the only chance is to follow the loop

- north empty

- east empty

- south empty

- west empty

>= front 9999 ;even if there is a wall, instead of a dead-end, the value will be 9999

>= left 9999

right 10000

=imaginal>

isa junction

turn =dir

?retrieval>

state free

?retrieval>

buffer empty ;no match

==>

+goal>

isa planning

state track-loop-right

=imaginal>

+retrieval>

isa junction

performance -1 ;the last way it took)

(p loop-left

=goal>

isa ext-junction

;all other directions have been already explored, the only chance is to follow the loop

- north empty

- east empty

- south empty

- west empty

>= right 9999 ;even if there is a wall, instead of a dead-end, the value will be 9999

>= front 9999

left 10000

=imaginal>

isa junction
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turn =dir

?retrieval>

state free

?retrieval>

buffer empty ;no match

==>

+goal>

isa planning

state track-loop-left

=imaginal>

+retrieval>

isa junction

performance -1 ;the last way it took)

(p track-loop-front ;if in the already explored direction is in front, take that way

=goal>

isa planning

state track-loop-front

=imaginal>

isa junction

turn =dir ;actual direction

=retrieval>

isa junction

performance -1 ;the last way it took

==>

=goal>

state track-turn

=retrieval>

performance 9999 ;give a terrible performance value, next time it won’t turn this way

=imaginal>

turn =dir

performance -1 ;create and save (later) in dm a chunk to mark this junction as the most recent

+retrieval>

isa movement

- direction nil)

(p track-loop-right ;if in the already explored direction is on the right, take that way

=goal>

isa planning

state track-loop-right

=imaginal>

isa junction

turn =dir ;actual direction

=retrieval>

isa junction

performance -1 ;the last way it took

==>

=goal>

state track-turn

!bind! =turn (turn-right =dir)

=imaginal>

turn =turn

performance -1 ;create and save (later) in dm a chunk to mark this junction as the most recent

=retrieval>
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performance 9999 ;set that way as a dead end

!bind! =move *stepTurn*

+nxt-move>

ISA turn-right

duration =move ;going right

+retrieval>

isa movement

- direction nil)

(p track-loop-left ;if in the already explored direction is on the left, take that way

=goal>

isa planning

state track-loop-left

=imaginal>

isa junction

turn =dir ;actual direction

=retrieval>

isa junction

performance -1 ;the last way it took

==>

=goal>

state track-turn

!bind! =turn (turn-left =dir)

=imaginal>

turn =turn

performance -1 ;create and save (later) in dm a chunk to mark this junction as the most recent

=retrieval>

performance 9999 ;set that way as a dead end

!bind! =move *stepTurn*

+nxt-move>

ISA turn-left

duration =move ;going left

+retrieval>

isa movement

- direction nil)

;;;-----------------------------------------------------------------------

;;;----------------------------nowhere to go------------------------------

;;;---------------------------it’s a dead end-----------------------------

;;;-----------------------------------------------------------------------

(p remove-junction ;all the possible ways are dead ends, updates the previous junction

=goal>

isa ext-junction

;all other directions have been already explored, the only chance is to follow the loop

- north empty

- east empty

- south empty

- west empty

right 9999 ;even if there is a wall, instead of a dead-end, the value will be 9999

left 9999

front 9999

=imaginal>

isa junction
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turn =dir

?retrieval>

state free

?retrieval>

buffer empty ;no match

==>

+goal>

isa planning

state dead-end

+retrieval> ;the last junction before the dead-end

isa junction

- performance nil ;only a valid junction

!bind! =move (* 2 *stepTurn*)

+nxt-move>

ISA turn-left

duration =move ;going back

!bind! =side (turn-back =dir)

=imaginal>

turn =side

north nil

east nil

south nil

west nil

performance nil)

; (p hit ;hits the wall, stop

; =goal>

; ISA planning

; - state end

; ?nxt-touched>

; touched true

; ==>

; =goal>

; state end

; +nxt-move>

; ISA emergency-stop

; +nxt-visual>

; isa light

; turn off

; +temporal>

; isa clear ;reset the timer

; )

;##################################################################################################

;-------------- Ab Hier Schaetzungen --------------------------------------------------------------

;##################################################################################################

; Versuche einen passenden Abschnitt im decl. memory zu finden.

(P Ausgabe_Direkt1

=goal>

isa Ausgabe

Unterstatus Suche_Direkt

- n1 -1

- e1 -1
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- s1 -1

- w1 -1

n1 =n1

e1 =e1

s1 =s1

w1 =w1

n2 =n2

e2 =e2

s2 =s2

w2 =w2

?retrieval>

state free

buffer empty

?imaginal>

state free

?vocal>

state free

==>

=goal>

Unterstatus Suche_Direkt2

!eval! (delete-duplicates *wplist* :test #’equal) ;removes the duplicated waypoints

+retrieval>

isa waypoint

n1 =n1

e1 =e1

s1 =s1

w1 =w1

n2 =n2

e2 =e2

s2 =s2

w2 =w2)

; Weg gefunden lade die Entfernung aus dem decl. memory.

(P Ausgabe_Direkt2

=goal>

isa Ausgabe

Unterstatus Suche_Direkt2

n1 =n1

e1 =e1

s1 =s1

w1 =w1

n2 =n2

e2 =e2

s2 =s2

w2 =w2

?retrieval>

state free

- buffer empty

?imaginal>

state free

?vocal>

state free

=retrieval>

isa waypoint
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distance =dist

==>

=goal>

Unterstatus Suche_Direkt3

=retrieval>

n1 nil

e1 nil

s1 nil

w1 nil

n2 nil

e2 nil

s2 nil

w2 nil

distance nil

+retrieval>

isa zahl

wert =dist)

; Erfolgreich einen Weg gefunden. Gib diesen aus.

(P Ausgabe_Direkt3

=goal>

isa Ausgabe

Unterstatus Suche_Direkt3

n1 =n1

e1 =e1

s1 =s1

w1 =w1

n2 =n2

e2 =e2

s2 =s2

w2 =w2

?retrieval>

state free

- buffer empty

?imaginal>

state free

?vocal>

state free

=retrieval>

isa Zahl

Wert =ent

Name =name

==>

; Hole neue Wegpunkte.

!eval! (next-waypoint)

!bind! =n1x (get-n1)

!bind! =e1x (get-e1)

!bind! =s1x (get-s1)

!bind! =w1x (get-w1)

!bind! =n2x (get-n2)

!bind! =e2x (get-e2)

!bind! =s2x (get-s2)

!bind! =w2x (get-w2)

=goal> ; Setze Goal auf neue Wegpunkte
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Unterstatus Suche_Direkt

n1 =n1x

e1 =e1x

s1 =s1x

w1 =w1x

n2 =n2x

e2 =e2x

s2 =s2x

w2 =w2x

-retrieval>

+imaginal>

isa Antwort

Wert =retrieval

Entfernung =name

n1 =n1

e1 =e1

s1 =s1

w1 =w1

n2 =n2

e2 =e2

s2 =s2

w2 =w2

-imaginal>

+vocal>

ISA speak

string =name

!output! (Wegpunkt =n1 =e1 =s1 =w1 zu =n2 =e2 =s2 =w2 habe ich =ent geschaetzt.

Ich werde nun die distance von =n1x =e1x =s1x =w1x zu =n2x =e2x =s2x =w2x schaetzen.))

; Ist die direkte Suche nicht erfolgreich suche indirekt ueber die Karte.

(P Ausgabe_Indirekt

=goal>

isa Ausgabe

Unterstatus Suche_Direkt2

- n1 -1

- e1 -1

- s1 -1

- w1 -1

n1 =n1

e1 =e1

s1 =s1

w1 =w1

n2 =n2

e2 =e2

s2 =s2

w2 =w2

?retrieval>

state error

?vocal>

state free

==>

=goal>

Unterstatus Suche_Indirekt

+retrieval> ; Hole Abschnitt der mit wp1 beginnt
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isa waypoint

n1 =n1

e1 =e1

s1 =s1

w1 =w1

- n2 nil

- e2 nil

- s2 nil

- w2 nil)

; Lade erste Zahl und speichere die Wegpunkte des ersten Abschnitts im imaginal.

(P Ausgabe_Kombiniere_Abschnitt

=goal>

isa Ausgabe

Unterstatus Suche_Indirekt

n1 =n1

e1 =e1

s1 =s1

w1 =w1

?retrieval>

state free

- buffer empty

?imaginal>

state free

=retrieval>

isa waypoint

distance =ent

n1 =n1

e1 =e1

s1 =s1

w1 =w1

n2 =n2

e2 =e2

s2 =s2

w2 =w2

?vocal>

state free

==>

=goal>

Unterstatus Hole_Zahl1

=retrieval>

n1 nil

e1 nil

s1 nil

w1 nil

n2 nil

e2 nil

s2 nil

w2 nil

distance nil

+retrieval>

isa zahl

wert =ent ; Lade den Zahlenchunk aus dem deklarativen Gedaechtnis

+imaginal>
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isa waypoint

n1 =n1

e1 =e1

s1 =s1

w1 =w1

n2 =n2

e2 =e2

s2 =s2

w2 =w2)

; Lade zweiten Abschnitt und speichere die entfernung aus dem retrieval in den imaginal

(P Ausgabe_Lade_Abschnitt2

=goal>

isa Ausgabe

Unterstatus Hole_Zahl1

n1 =n1

e1 =e1

s1 =s1

w1 =w1

?retrieval>

state free

- buffer empty

?imaginal>

state free

?vocal>

state free

=retrieval> ; verfaelschte Zahl

isa Zahl

Wert =ent

=imaginal> ; Wegpunkt 1 und mittlerer wp.

isa waypoint

n2 =n2

e2 =e2

s2 =s2

w2 =w2

==>

=goal>

Unterstatus check_wp

+retrieval> ; hole 2. Abschnitt

isa waypoint

n1 =n2

e1 =e2

s1 =s2

w1 =w2

- n2 nil

- e2 nil

- s2 nil

- w2 nil

=imaginal>

distance =ent)

(P valid_wp

=goal>

isa Ausgabe
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Unterstatus check_wp

n1 =n1

e1 =e1

s1 =s1

w1 =w1

?retrieval>

state free

- buffer empty

?imaginal>

state free

- buffer empty

?vocal>

state free

=retrieval> ; Im retrieval der zweite Abschnitt

isa waypoint

n2 =n2

e2 =e2

s2 =s2

w2 =w2

=imaginal> ; Im Imaginal der erste Abschnitt mit schaetzfehler!

isa waypoint ; Mittleren Wegpunkt

!eval! (not (and (eq =n1 =n2) (eq =e1 =e2) (eq =s1 =s2) (eq =w1 =w2))) ;the two junctions aren’t the same

==>

=goal>

Unterstatus Hole_Abschnitt2

=retrieval>

=imaginal>)

(P invalid_wp

=goal>

isa Ausgabe

Unterstatus check_wp

n1 =n2

e1 =e2

s1 =s2

w1 =w2

?retrieval>

state free

- buffer empty

?imaginal>

state free

- buffer empty

?vocal>

state free

=retrieval> ; Im retrieval der zweite Abschnitt

isa waypoint

n1 =n1

e1 =e1

s1 =s1

w1 =w1

n2 =n2

e2 =e2

s2 =s2

w2 =w2
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=imaginal> ; Im Imaginal der erste Abschnitt mit schaetzfehler!

isa waypoint ; Mittleren Wegpunkt

distance =ent

==>

=goal>

Unterstatus Hole_Zahl1 ;try again

!eval! (reduce_activ =n1 =e1 =s1 =w1 =n2 =e2 =s2 =w2) ;reduce the activation of this chunk, so next time

it won’t be retrieved

=retrieval>

n1 nil

e1 nil

s1 nil

w1 nil

n2 nil

e2 nil

s2 nil

w2 nil

distance nil

+retrieval>

isa zahl

wert =ent

=imaginal>)

; Hole die Entfernung des zweiten Abschnits (Schaetzfehler durch das decl. memory).

(P Ausgabe_Lade_Entfernung_Abschnitt2

=goal>

isa Ausgabe

Unterstatus Hole_Abschnitt2

n1 =n1

e1 =e1

s1 =s1

w1 =w1

?retrieval>

state free

- buffer empty

?imaginal>

state free

- buffer empty

?vocal>

state free

=retrieval> ; Im retrieval der zweite Abschnitt

isa waypoint

distance =ent_neuer_abschnitt

n2 =n2

e2 =e2

s2 =s2

w2 =w2

=imaginal> ; Im Imaginal der erste Abschnitt mit schaetzfehler!

isa waypoint

distance =ent_bisher ; Entfernung mit schaetzfehler

n2 =n_mitte

e2 =e_mitte

s2 =s_mitte

w2 =w_mitte ; Mittleren Wegpunkt
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==>

=goal>

Unterstatus Addiere_Zahlen

=retrieval>

n1 nil

e1 nil

s1 nil

w1 nil

n2 nil

e2 nil

s2 nil

w2 nil

distance nil

+retrieval>

isa zahl

wert =ent_neuer_abschnitt ; Hole die verfaelschte zahl aus dem deklarativen Memory

=imaginal>

n2 =n2

e2 =e2

s2 =s2

w2 =w2)

; Addiere die beiden Entfernungen und kehre zurueck zur direkten suche, da jetzt im dekl. memory neue chunks

sind!

(P Ausgabe_Addiere_Abschnitt2

=goal>

isa Ausgabe

Unterstatus Addiere_Zahlen

n1 =n1

e1 =e1

s1 =s1

w1 =w1

?retrieval>

state free

- buffer empty

?imaginal>

state free

- buffer empty

?vocal>

state free

=retrieval>

isa Zahl

Wert =ent_abschnitt2

=imaginal>

isa waypoint

distance =ent_abschnitt1

n2 =n2

e2 =e2

s2 =s2

w2 =w2

!bind! =ent (+ =ent_abschnitt1 =ent_abschnitt2) ; Addiere die beiden Zahlen zusammen.

==>

=goal> ; Gehe zurueck zur direkten Suche.
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Unterstatus Addiere_Zahl_Hole_Zahl

+retrieval>

isa Zahl

Wert =ent

=imaginal>

!output! (Entfernung des neuen Chunks von =n1 =e1 =s1 =w1 zu =n2 =e2 =s2 =w2 ist =ent))

; Wenn die Zahlen zu gro

(P Ausgabe_Addiere_Abschnitt_Zu_Gross

=goal>

isa Ausgabe

Unterstatus Addiere_Zahl_Hole_Zahl

n1 =n1

e1 =e1

s1 =s1

w1 =w1

?imaginal>

state free

- buffer empty

?retrieval>

state error

=imaginal>

isa waypoint

distance =ent_abschnitt1

n2 =n2

e2 =e2

s2 =s2

w2 =w2

?vocal>

state free

==>

=goal> ; Gehe zurueck zur direkten Suche.

Unterstatus Suche_Indirekt

+vocal>

ISA speak

string "Och ne! Ich weigere mich mit solchen Zahlen zu Arbeiten!"

-retrieval>

-imaginal>)

; Speichere den neuen Abschnitt, und suche erneut einen direkten Weg!

(P Addiere_Zahl_Hole_Zahl

=goal>

isa Ausgabe

Unterstatus Addiere_Zahl_Hole_Zahl

?retrieval>

state free

- buffer empty

=retrieval>

isa Zahl

wert =ent

?imaginal>

state free

- buffer empty

=imaginal>
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isa waypoint

n2 =n2

e2 =e2

s2 =s2

w2 =w2

==>

=goal>

Unterstatus Suche_Direkt

=imaginal>

distance =ent

-retrieval>

-imaginal>)

; Wenn sich das model nicht mehr erinnert, oder wenn das model den Weg nicht gelaufen ist, hole naechste zu

schaetzende distance

(P Nicht_Gefunden

=goal>

isa Ausgabe

Unterstatus Suche_Indirekt

n1 =n1

e1 =e1

s1 =s1

w1 =w1

n2 =n2

e2 =e2

s2 =s2

w2 =w2

?vocal>

state free

?retrieval>

state error

==>

; Hole neue Wegpunkte.

!eval! (next-waypoint)

!bind! =n1x (get-n1)

!bind! =e1x (get-e1)

!bind! =s1x (get-s1)

!bind! =w1x (get-w1)

!bind! =n2x (get-n2)

!bind! =e2x (get-e2)

!bind! =s2x (get-s2)

!bind! =w2x (get-w2)

=goal> ; Setze Goal auf neue Wegpunkte

Unterstatus Suche_Direkt

n1 =n1x

e1 =e1x

s1 =s1x

w1 =w1x

n2 =n2x

e2 =e2x

s2 =s2x

w2 =w2x

-retrieval>

+vocal>

lxxi
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ISA speak

string "Haeh! Wei ich nicht!"

!output! (Wegpunkt =n1 =e1 =s1 =w1 zu =n2 =e2 =s2 =w2 habe ich nicht gefunden.

Ich werde nun die Entfernung von =n1x =e1x =s1x =w1x zu =n2x =e2x =s2x =w2x schaetzen.) )

; Wenn der Versuch zuende hoere auf!

(P Ende

=goal>

isa Ausgabe

Unterstatus Suche_Direkt

n1 -1

e1 -1

s1 -1

w1 -1

?vocal>

state free

==>

+goal>

isa planning

state move

+retrieval> ;filling the buffer for the next production

isa movement

- direction nil

+vocal>

ISA speak

string "Das war Anstrengend! Ich nehm dann die Versuchspersonenstunden!"

!Output! ( The End )

!eval! (setq *wplist* ’((-2 -2 -2 -2)))

!eval! (setq *wp1index* 0)

!eval! (setq *wp2index* 1))

(set-similarities

(Eins Zwei 0)

(Zwei Drei 0)

(Drei Vier 0)

(Vier Fuenf 0)

(Fuenf Sechs 0)

(Sechs Sieben 0)

(Sieben Acht 0)

(Acht Neun 0)

(Neun Zehn 0)

(Zehn Elf 0)

(Elf Zwoelf 0)

(Zwoelf Dreizehn 0)

(Dreizehn Vierzehn 0))

(goal-focus goal)

(spp recognise-goal :u 20)

(spp dead-end :u 0)

);define-model
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