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Abstract. This paper presents a biologically-inspired method for selecting visual land-
marks which are suitable for navigating within not pre-engineered environments. A landmark
is a region of the goal image which is chosen according to its reliability measured through a
phase called Turn Back and Look (TBL). This mimics the learning behavior of some social
insects. The TBL phase affects the conservativeness of the vector field thus allowing us to
compute the visual potential function which drives the navigation to the goal. Furthermore,
the conservativeness of the navigation vector field allows us to assess if the learning phase has
produced good landmarks. The presence of a potential function means that classical control
theory principles based on the Liapunov functions can be applied to assess the robustness of
the navigation strategy. Results of experiments using a Nomad200 mobile robot and a color

camera are presented throughout the paper.

1 Introduction

Animals, including insects, are proficient in navigat-
ing and, in general, several biological ways of solving
navigational tasks seem to be promising for robotics
applications. The different methods of navigating
have been recently studied and categorized as (Trul-
lier et al., 1997): guidance, place recognition - trig-
gered response, topological and metric navigations.
In order to perform such tasks animals usually deal
with identifiable objects in the environment called
landmarks (Wehner, 1992).

The use of landmarks in robotics has been ex-
tensively studied (Borenstein et al., 1996; Thrun,
1996). Basically, a landmark needs to possess char-
acteristics such as the stationarity, reliability in
recognition, anduniqueness. These properties must
be matched with the nature of a landmark: land-
marks can be artificial or natural. Of course it is
much easier to deal with artificial landmarks instead
of dealing with natural ones, but the latter is more
appealing because their use requires no engineering
of the environment. However, a general method of

dealing with natural landmarks still remains to be
introduced. The main problem lies in the selection
of the most suitable landmarks (Mori et al., 1995;
Thrun, 1996).

Recently it has been discovered that wasps and
bees perform specific flights during the first jour-
neys to a new place to learn color, shape and dis-
tance of landmarks. Those flights are termed Turn
Back and Look (TBL) (Lehrer, 1993). Once the
place has been recognized using landmarks, insects
can then accomplish navigation actions accordingly.
The Cartwright and Collett model (Cartwright and
Collett, 1983) is one of the main methods of navi-
gating (Trullier et al., 1997).

The aim of this paper is to show the learning
system of a biologically-inspired navigation method
based on natural visual landmarks. The introduced
system will select natural landmarks from the envi-
ronment adopting the TBL phase (section 2).

From the selected landmarks suitable navigation
movements will be computed (section 3) and in sec-
tion 4 the guidance principle and how this can be
influenced by the TBL phase will be addressed. The



measurable effects of TBL (namely, the conserva-
tiveness of the navigation vector field) is a way to
assess the quality of the landmarks chosen by the
learning phase.

The conservativeness of the field also permits
to compute the (unique) potential function which
drives landmark navigations and formal ways to as-
sess the robustness of the whole approach can be
introduced. In fact, the presence of a potential func-
tion around the goal is a sufficient condition for the
application of the classical control theory based on
Liapunov functions. Tests performed with the No-
mad200 will conclude the paper (section 5).

2 Learning Landmarks

A landmark must be reliable for accomplishing a
task and landmarks which appear to be appropriate
for human beings are not necessarily appropriate for
robots because of the completely different sensor
apparatus and matching systems (Thrun, 1996).

For example, the necessity of performing specific
learning flights allows the insects to deal with ob-
jects which protroud from the background or which
lie on a different plane than the background (Collett
and Zeil, 1996). Attempts to understand in detail
the significance of learning flights have been made
only recently. Essentially, the flights are invariant
in certain dynamic and geometric structures thus
allowing the insects to artificially produce visual
cues in specific areas of the eyes (Zeil et al., 1996).
Perhaps, the main reason is that the precision for
the homing mostly depends upon the proximity of
chosen landmarks to the goal (Cheng et al., 1987).
In fact, those flights need to be repeated whenever
some changes in the goal position occur (Lehrer,
1997). Therefore, it becomes crucial to understand
whether or not a landmark is robust for the task
accomplished by the agent.

Following the biological background and recon-
sidering the results presented in (Thrun, 1996), one
key point is that once the meaning of reliability
has been established then the problem of selecting
landmarks is automatically solved. Therefore, stat-
ing what is meant by reliability of landmarks, once
given the specific sensor and matching apparatus is
a mandatory step.

2.1 Sensor and matching apparatus

The use of visual landmarks asks for real-time per-
formances and this can lead to the use of spe-

cific hardware for their identification. The robot
Nomad200 (figure 1) that was used to accomplish
the tests includes the Fujitsu Tracking Card (TRV)
which performs real-time tracking of full color tem-
plates at a NTSC frame rate (30Hz). Basically, a
template is a region of a frame which can be iden-
tified by two parameters m, and m, representing
the sizes along X and Y axes respectively.

Figure 1: The Nomad200

The card can simultaneously track many tem-
plates which have been previously stored in a video
RAM. For each stored template the card performs a
match in a sub-area of the actual video frame adopt-
ing the block matching method. This introduces the
concept of correlation between the template and a
sub-area of the actual video frame. The correlation
measure is given by the sum of the absolute differ-
ences between the values of the pixels.

To track a template it is necessary to calculate
the distortion between the template and a frame
not only at one point on the frame but at a number
of points within a searching area. The searching
area is composed of 16 x 16 positions in the frame.
The whole set of computed correlation measures is
known by the term correlation matriz. Examples
of correlation matrices are reported in figure 15 at
the end of the paper. To perform the tracking, the
matching system proposes as an output the coor-
dinates of the position which represents the global
minimum in the correlation matrix.

This approach strongly resembles the region-
based optical flow techniques (Anandan, 1989; Lit-
tle and Verri, 1989). There, the flow is defined as
the shift that yields the best fit between the image
regions at different times.
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Figure 2: The neighborhood used in the Valley
Method

2.2 Choosing the best landmarks

Mori et al. have taken advantage of the correla-
tion matrix to generate attention tokens from scenes
(Mori et al., 1995). The method they introduced
is suitable to be used in the case of self-extraction
of landmarks. Relaxing their method (the wvalley
method) the following can be obtained:

r=1- 5 (1)
where the global minimum is g and local minimum
is ¢’. The local minimum is computed in a circle
around ¢ as visible in figure 2. The value r is a
measure on how the template is uniquely identifi-
able in its neighborhood: the greater r the more
uniquely identifiable the template. Therefore, by
reliable landmarks we mean templates which are
uniquely identifiable.

There are several degrees of freedom in searching
for the best landmarks within a video frame. These
are the coordinates of the origin of a landmark and
its sizes along X and Y. Some simplifications can be
introduced (Bianco, 1998): only squared templates
are used (m, = my), and the position of a landmark
is searched for by maximizing the following:

max
(02,0, )Egrid

2)

(0%,00) = arg

xr Yy Tl(owvoy)

where 7;(0., 0y) identifies the reliability factor for a
landmark [ whose origin is located in (0, 0y) rep-
resenting a cross of a grid. Therefore the position
(0},0;) with the highest r is returned. In order
to assure that different landmarks occupy differ-
ent positions, previously chosen coordinates are not

considered. Examples of landmarks chosen are re-
ported at the end of the paper in figure 16.

Once the best landmarks have been chosen from
the static image of the goal, then they are stored
in an internal video RAM to be used for successive
tasks, the first being the Turn Back and Look.

2.3 The Turn Back and Look phase

The landmarks which have been statically chosen
will be used for navigation tasks. We found that
it was necessary to lest them in order to verify
whether they represent good guides for navigation
tasks.

TBL can help in verifying this (Collett and Zeil,
1996; Bianco, 1998) by testing whether during the
motion the statically chosen landmarks still remain
robustly identifiable.

Through a series of stereotype movements small
perturbations (local lighting conditions, changes in
camera heading, different perspectives and so on)
can influence the reliability of the statically chosen
landmarks. Referring to figure 3, the robot goes
from the top to the bottom and the camera (arrows
pointing to the top) is continously pointing towards
the goal.

Figure 3: The arcs performed by the robot to im-
plement the TBL phase

These sorts of perturbations occur in typical
robot journeys thus allowing us to state that the
TBL phase represents a testing framework for land-
marks. In other words, the robot tries to learn
which landmarks can be suitably used in real navi-
gation tasks by simulating the conditions the robot
will encounter along the paths.



At the end of the TBL process only those land-
marks that are visible and whose reliability 7; is
above a threshold are suitable to be used in naviga-
tion tasks.

The reliability factor r; for landmark / is continu-
ously computed during the TBL phase through the
following:

TBL
e T

TBL ®)

rr =
where T'BL is the total number of steps exploited
till that time, and r? is the reliability of landmark
l calculated at time 4. In the tests, at the end of
the phase, T'BL usually consists of 400 steps (an
internal counter) and takes about 13 seconds to be
performed. In figure 17, which has been reported at
the end of the paper, two pictures taken by a TBL
phase exploited by the robot are shown.

3 Navigation from landmarks

After reliable landmarks have been chosen then nav-
igation information can be extracted from them
(Bianco, 1998; Bianco and Zelinsky, 1999). The un-
derlying biological principle is that a real movement
is represented by an attraction force. It is produced
by taking into account that the agent tries to restore
the original position and size of the involved land-
marks (Cartwright and Collett, 1983). The data
can be fused together by weighing them by intro-
ducing a sigmoid function s(r;) ranging from 0 to 1.
The overall navigation vector can be thus calculated
as:

V=V,V]="
s

=1

L
> - s(r)
/ — (4)
(r1)

where L is the number of landmarks chosen after
TBL, r; is the reliability value of landmark [ and
7 is the attraction force felt by landmark [. Lastly,
V. and Vj, represent an estimation of the distance
(along z and y axes of the environment) from the
actual position to the goal position.

Figure 4 summarizes the situation where the pic-
ture represents a typical frame taken during a navi-
gation test. In particular, the circle at the bottom-
center represents the overall attraction exerted by

the goal. Above the circle the variance of that at-
traction is reported and under the circle the attrac-
tion vector is broken down into a module and an
angle. In the circle on the right the single attrac-
tion exerted by each landmark is drawn. Each land-
mark has a number associated with it given by the
value of the sigmoid function applied on its relia-
bility measure. The arrows at the top-center of the
figure represent the motion commands given to the
robot.

Figure 4: A frame taken by a real navigation task

Vector V represents the next movement with the
module and direction relative to the actual robot
position. The system dynamical model is therefore
given by:

where z(k) and y(k) represent the coordinates of
robot at step k; Vi(z(k),y(k)) and V,(z(k),y(k))
the displacements computed at step k following
equation 4. Those displacements are related to the
position at step k given by (z(k),y(k)). Lastly,
xz(k + 1) and y(k + 1) represent the new positions
the robot will move to. Clearly, an important equi-
librium point (z*,y*) for the system is given by the
coordinates of the goal position.

The navigation vector computed in equation 4

can be considered as the overall attraction exerted
by the goal position from that place.



4 The guidance principle

There is evidence concerning the existence of a vi-
sual potential field around a goal position when
robots are visually guided (Bianco et al., 1997;
Gaussier et al., 1998; Cassinis et al., 1998; Bianco
et al., 1999; Bianco and Zelinsky, 1999).

The nature of the area of attraction is intimately
related to the existence of a navigation field rep-
resented by the navigation vectors from the points
being considered. An example of a navigation vec-
tor field is represented by figure 5. The goal (repre-
sented by a small circle) seems to be located within
a ba
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Figure 5: An example of a navigation field: direc-
tions and modules (numbers)

A key point for the comprehension of the connec-
tion links between the landmark learning phase and
the navigation phase is the analysis of the naviga-
tion vector field. Therefore, we are strongly moti-
vated to study these concepts in some detail.

Formally speaking, a vector field in two dimen-
sions is a function that assigns to each point (z,y)
of the xy-plane a two-dimensional vector V(z,y)
usually represented by its two components:

Viz,y) = [Ve(z,y) Vy(z,9)] (6)
where V;(z,y) is the x-component and V(z,y) is
the y-component. Note that in some cases the vec-
tor field is only defined for a region of the xy-plane.

A type of vector field arising in a number of dis-
ciplines is the conservative vector field. This is de-
fined as one of which the integral computed on a

closed path is zero, i.e. the vector field V(z,y) is
conservative if:

%V(x,y) odi'=0 (7)
for any closed path ¢ contained in the field of V;
dr’ is the infinitesimal direction of motion. Such a
field can always be represented as the gradient of a
scalar function defined by (Ross, 1995):

(zy)
U(z,y) = /( V(X,Y)odF (8)

0,0)
where the path of integration is arbitrary. The
scalar function U is referred to as the potential of
the conservative force V in question. If the func-
tion U(x,y) is known then the vector field can be
determined from the relation:

V(w,y) = VU (,y) (9)

A non-conservative field is one in which the cir-
cuitation is non-null: the calculation of U depends
on the path followed. In other words, U is not de-
termined entirely by the extreme points.

All the considerations can be applied to the visual
homing. Assuming that the goal position is located
at the minimum of the potential basin, equation
9 is slightly modified with the following (Latombe,
1991; Khatib, 1986):

V=[VaVyl=- [aUézv y) 3Uéza y)

| o
If the field is conservative, the scalar product in-

troduced in equation 8 can be further simplified by

following a particular curve ¢ (Ross, 1995):

W%M‘/?MK%WX/%M%W@’

Py
(11)
where U(x,y) is the potential function and the path
of integration is along the horizontal line segment
from the reference point (pz, py) to the vertical line
through (z,y) and then along the vertical line seg-
ment to (z,y).

It can be taken advantage of this method of com-
puting the potential function by allowing as the ref-
erence point the coordinates of the goal position.
Every other point is thus referred to in terms of
potential in reference to the goal position.



If the field is not conservative then the integra-
tion detailed in equation 8 can lead to an infinite
numbers of results depending on the curve c.

A practical application of equation 7 to state if
the field is conservative needs to be found. To this
extent, let’s suppose that V; and V,, are smooth
and continuously differentiable and that the vector
field is defined on a connected set. Under these
hypothesis, a necessary and sufficient condition for
the unique integration of the vector field is that the
following relation ( Cauchy-Riemann) holds (Strang,
1986):

WVal(z,y) _ OVy(z,y)

12
oy or (12)
In other terms:
ovy 9V,
——=0 13
oy or (13)

The first member of equation 13 can be a measure
of the level of conservativeness of the vector field.

4.1 Robustness of the visual poten-
tial function

In order to take advantage of the discussion pre-
sented so far and supposing that all the necessary
hypotheses hold, the dynamic system presented in
equation 5 can be considered continuous-time with
the following (leaving out the vector notations):

&(t) = V(z(1)) (14)

where = represent the generic coordinates and an
equilibrium point x* is located at the goal position.

Several important considerations for the stability
of the system can be expressed focusing attention
on its properties. In particular, when a dynamic
system can be represented by & = f(z) with a fixed
point x*, and it is possible to find a Liapunov func-
tion, i.e. a continously differentiable, real-valued
function U(z) with the following properties (Stro-
gatz, 1994):

1. U(z) >0 for all  # 2* and U(z*) =0

2. U < 0forall z # z* (all trajectories flow down-
hill toward x*)

then z* is globally stable: for all initial conditions
z(t) — z* as t — oo.

The system depicted in equation 14 is of type
2 = f(z) but, unfortunately, there is no systematic

way to construct Liapunov functions. In our case, a
Liapunov function can be constructed by integrat-
ing the right-hand side of the system equation 14
(Luenberger, 1979). This automatically leads us to
introduce the visual potential function as a good
candidate for analyzing the overall stability of the
system.

If the visual potential function has a basin of at-
traction with the minimum located at the goal po-
sition then the above introduced theory states that
homing is intrinsically stable, at least starting navi-
gating from within the convergent region of the en-
vironment.

Vx Vxy

Figure 6: An example of V, and Vj, and their cross
derivatives

5 Tests

As previously explained, tests have been performed
both to measure how TBL affects the conservative-
ness of the navigation field and to calculate the re-
gion of convergence for the overall system.

The collection of the whole set of vectors (see
equation 6) is performed firstly placing the robot in
a known position of the environment and then ap-
plying the method detailed in equation 4. The itera-
tion of the method over the whole environment and
the collection of every displacement vector produces
a vector field, as previously exemplified by figure 5.
Each cell is approximately as big as the base of the
robot.

Referring to equation 13 the partial derivatives
of V,, and V,; must be computed. Figure 6 plots the



Vxy-Vyx

%

\%%%%
S

ST

NS Y%
XKL
XS
:

Figure 7: Conservativeness of a vector field com-
puted with a TBL threshold of 0 and landmarks
sized 6

components V; and V, and their cross derivatives
88‘;“’ and aa‘;” taken by a real test.

The conservativeness of the field computed with
a threshold set to 0 and landmarks sized 6 is shown
in figure 7. Only small regions of the whole area
roughly satisfy the constraint. A small threshold for
TBL can dramatically change the situation. In fig-
ure 8 the amount of conservativeness for each point
is plotted.
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Figure 8: Conservativeness of a vector field com-
puted with a TBL threshold of 0.10 and landmarks
sized 6

A key consideration is concerned with the scale

along z: it is about one order of magnitude less
than the one reported in figure 7. A trend toward
a conservative field is thus becoming evident.

The situation obtained with a threshold of TBL
set to 0.20 has been reported in figure 9. A large
area of the environment has a measure of conserva-
tiveness that roughly equals 0.
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Figure 9: Conservativeness of a vector field com-
puted with a TBL threshold of 0.20 and landmarks
sized 6

Similar considerations can be expressed dealing
with a different landmark size. For example, figure
10 shows the case where the TBL threshold is 0.20
and landmarks have a size of 4. The template of the
graph is the same as before. Therefore, with a good
choice of threshold the field becomes conservative
regardless of the size of the landmarks.

5.1 Computation of the visual poten-
tial field

The computation of the visual potential field must
be performed only on those areas of the environ-
ment which are conservative. From the results of
the tests only two cases can be considered: when
TBL threshold is set at 0.20 and landmarks have a
size of 6 or 4. Starting with the former and follow-
ing the method detailed in the previous section, the
visual potential function is shown in figure 11.

The goal position is located in (4,5) and it rep-
resents the reference point for equation 11.

The shape of the potential function tends to pro-
duce a minimum around the goal (see figure 12).
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Figure 10: Conservativeness of a vector field com-
puted with a TBL threshold of 0.20 and landmarks
sized 4

In addition, roughly speaking, the basin of at-
traction of the goal is the whole environment, i.e.
apart from some cases, all the starting points lead
to the goal. To this extent, consider the differences
in the potential field showed in figure 14 where the
TBL threshold is 0.20 but the landmark size is 4.

There are two important differences: the first
concerns the basin of attraction and the second is
concerned with the depth of the minimum in the
goal position.

The basin of attraction determines how far a goal
position can be felt. In other words, if the robot
starts navigating within the basin of attraction then
it reaches the goal position. Outside the basin the
robot could lead to other (false) goals. The visual
potential function reported in figure 11 possesses a
larger basin of attraction than the one reported in
figure 14 which influences the robot only when the
robot is close to the goal.

Intriguingly enough, this has strong analogies
with the biological results reported in (Cartwright
and Collett, 1987). The authors discussed the area
of attraction of the goal (namely, the catchment
area) considering the size of landmarks surround-
ing it. Large landmarks determine larger catchment
areas than smaller landmarks. Furthermore, larger
landmarks determine a coarse approach to the goal
whereas smaller landmarks allow the insects to pre-
cisely pinpointing the goal position.

To this extent, the visual potential function pro-
duced with landmarks sized 4 has a deeper mini-
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Figure 11: Potential function computed with a TBL
threshold set to 0.20 and landmarks sized 6

mum at the goal than the potential obtained with
a size of 6 (see figure 13 compared to 12).

5.2 Issues on the visual potential as
a Liapunov function

From the potential function previously plotted it
can be easily understood why the system gets some-
times trapped into false goals or what can be the
region of convergence for the main goal position.

This implicitly states that the system has not
overall stability on the whole environment. There-
fore, the visual potential function itself cannot be
considered Liapunov compliant unless reducing its
domain of application to a region around the goal
position, starting from which the system converges
(see e.g. figure 12).

6 Concluding remarks

This paper has presented the learning system of
a biologically-inspired navigation method based on
natural visual landmarks. The visual learning phase
(TBL) affects the conservativeness of the navigation
vector field thus allowing us to explain landmark
navigation in terms of a potential field.

Conversely, the computation of the conservative-
ness of a navigation field can assess the reliability of
the landmarks chosen and, therefore, measure the
quality of the learning phase.



Partial view of U

Figure 12: Potential function computed with a TBL
threshold set to 0.20 and landmarks sized 6 magni-
ficated 30 times around the goal

Lastly, the presence of a potential function
around the goal allows us to apply classical con-
trol theories to assess the robustness of the overall
navigation system. The idea of applying methods
from vector analysis to navigation problems allows
us to evaluate the performance of different models
and can represent an important step for topological
navigations.
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Figure 15: Examples of distortion matrices which have been computed in the neighborhood of the tem-

plates (boxes in the pictures).



Figure 16: Different choices of landmarks for different landmark sizes



Figure 17: Two pictures taken from a TBL phase: the numbers associated with each landmark represent
r; in different times



