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Abstract This paper describes the scope and the current status of
the research on industrial robotics that is being conducted at Milan
Polytechnic Artificial Intelligence Project.

The research, started about three years ago, has led to important
results both for hardware and software architectures.

This paper is mainly concerned with the hardware architecture of
the developed system, that is, a hardware architecture based on an
array of microcomputers, driven by a minicomputer, that implements
an original distributed intelligence system and that may be used to
control a wide variety of processes.

Special emphasis is given to the possibility of driving more than
one robot with the same control system, in order to obtain completely
automatic assembly lines.

. No restrictions are placed on the kind and number of robots and
special-purpose machines employed.

An overview of the software structure of the machine, and of the
methods that may be used to program it, is also given.

T o e e e

Introduction

The dramatic development that industrial robots have undergone
in the last few years has led many scientists to the conclusion that
robots represent one of the most interesting applications of tech-
nology, and that their impact on manufacturing processes will be
very strong in the immediate future.
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The aim of this paper is to present the results of a three-year
research project conducted at the Milan Polytechnic Artificial In-
telligence Project (MP-AI). The results mainly concern control sys-
tems for sophisticated machines, such as assembly robots. _

The outstanding results of this research were that a distributed
intelligence system, implemented on an array of loosely connected
microcomputers driven by a supervisor unit, offers very good per-
formance, and undoubtedly greater than that obtainable by tra-
ditional control systems.

Although the system was designed to drive robots, it may also
be used for a wide variety of industrial control problems.

The working principles of this system will be described, together
with some experimental results obtained on the MP-AI SUPER-
SIGMA robot.

The implementation of the system showed that its cost-to-per-
formance ratio is comparable to that of a traditional control system,
and improves as the complexity of the process to be controlled
increases.

The next section contains an overview of the problems that had
to be solved both from hardware and software points-of-view.
Mechanical problems will not be discussed, since they depend upon
the robot used and are not strictly related to the other problems.

The following section states how intelligence must be split in
order to ensure the best utilization of the system’s computing
power, while succeeding sections explain how the system was
actually implemented.

Overview of Problem
Many different mechanical structures may be found among in-
dustrial robots.

The most common is perhaps the spherical-coordinates or cylin-
drical-coordinates structure but, especially for assembly robots
such as the OSAI SIGMA [1], the Cartesian coordinates structure
has proved to be very effective.

This is because assembly operations consist mainly of three kinds
of operation: picking up pieces from dispensers, orienting them,
and inserting them in their final positions. The analysis of some
typical cases has led to the conclusion that the first and the third
kind of operation are usually performed by moving the hand of the
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robot along straight lines, and that these lines often coincide with
the axes of an orthogonal Cartesian space.

It can be said that, if the robot has a Cartesian structure, many
“important™ operations may be carried out by moving one motor
only.

On the other hand, nearly all other movements require a high
degree of precision with respect to their final position, although
the path followed from the initial to the final position is often ir-
relevant,

This means that movements of the motors in a Cartesian robot
need not be strictly correlated. For instance, a movement between
the points P1 (X1,Y1,Z1) and P2 (X2, Y2,Z2) may be divided into
three separate movements:

Axis X: From X1 to X2

Axis Y: From Y1 to Y2

Axis Z: From Z1 to Z2
These three movements may take place one at a time or simul-
taneously without affecting the final result.

The control system was therefore designed without taking into
account the need of coordinating movements of different motors.
(Linear interpolation is, however, possible, in order to obtain
straight movements in any direction.)

This obviously limits the field of application of the control sys-
tem. It is, however, possible to tailor the system to other kinds of
robot by implementing more hierarchical levels than the two
described in this paper [2].

Although the mechanical devices employed in robots are nearly
always very good, and offer great accuracy and working speed,
their control is usually quite poor, thus limiting top performance
of the mechanics. For instance, many robots that could be used
for complex and delicate tasks are driven by simple NC and CNC
systems, thus making them act as special numerical control ma-
chines, rather than as true robots.

Moreover, differences between manufacturers’ standards make
it often difficult to interface robots of different kinds when co-
ordinated jobs are required.

The main goal of the research was to design a system that would
allow top performance from the mechanics and that could be used
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Figure 1.
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without difficulties for several kinds of robots, thus allowing easy
interfacing between different machines.

The research began when the feasibility model of the Olivetti
SIGMA robot was donated to us in March, 1976. When the machine
(see Fig. 1) first came to our laboratory, the control system, based
on standard circuits employed in NC machines, severely limited the
performance of the mechanics (mainly motors), and no significant
improvements were possible.

The first decision was then to completely rebuild the electronics
using new concepts, keepingin mind that the control system should
enhance the mechanical performance rather than limit it,

Another consideration was that the new control system should
be economical, simple, and reliable, with a high degree of modu-
larity and of flexibility.

The global system, that is, the mechanical part and the control
electronics, was named SUPERSIGMA.

In order to build a machine with such characteristics, it was
necessary to split the global control problem into many sub-prob-
lems in such a way that the various sections of the resultingmachine
would not interfere with each other, and that connections between
them would be as simple as possible.

First of all, the components of the robot were analyzed in order
to determine their control needs, and also to see if it was possible
to classify them accordingly.

This analysis led to the conclusion that the mechanical part of a
robot is made up of only two classes of device: actuators and
Sensors.

In order to avoid any confusion, two definitions will be given.

An actuator is any device that, in response to electrical stimuli
applied to its inputs, causes physical modifications of the space in
which the robot operates. This definition applies not only to motors
and similar devices, but also to lamps, warning bells, etc.

A sensor is any device whose electrical output depends—accord-
ing to a given law—upon one or more physical parameters of the
world surrounding the robot or of the robot itself.

Of course, both actuators and sensors may be divided into a
great number of sub-classes, but the fact that no devices may be
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added to the robot that are neither actuators nor sensors is ex-
tremely important for the principles being discussed.

High-Level and Low-Level Control: The CCU Concept

Once the components of the mechanical part have been defined, it
must be seen how they can be connected together to achieve the
expected performance from the robot.

To do this, a comparison will be made with the human body. It
should be pointed out that this comparison is only done to clarify
some concepts, and that the robot control system was not designed
_as an imitation of the organization of man or of other animals.

First, there must be a ‘“‘brain that controls the whole system
according to its “will,”” that is, a program that describes the tasks
the robot must perform. This brain has the complete control of
the machine, since no other device may undertake any action with-
out having been authorized by the brain. For this reason, the brain
will be referred to as CCU (Central Control Unit).

Since the robot must be programmable, it is most convenient
that the brain be implemented on a computer, rather than on ran-
dom logics.

SUPERSIGMA employs stepping motors whose characteristics
will be detailed in the next section; it will only be said here that it
is impossible for a single computer to control all six motors of
SUPERSIGMA, plus the other devices (hands, force sensors, etc.).

On the other hand, controlling a stepping motor is not a difficult
task: it only requires a great amount of quite trivial processing in
order to obtain suitable accelerations and decelerations.

For this reason, some “nervous ganglions™ were inserted into the
system. These receive concise commands from the CCU and process
them in order to obtain signals suitable for driving the motors.

The same thing happens for all the other devices of the system.
For instance, force sensors applied to the wrists of the robot re-
quire an analog to digital conversion and some processing of the
resulting signal. All this work is done by a specialized “‘ganglion’;
the CCU receives only the useful information that can be extracted
from sensors.

The correspondence between human body organs and robot
components is shown in Fig. 2.
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Figure 2, Correspondence between body and robot organs

The nature of the jobs that must be committed to ganglions is
Sl:lCh that, at this level also, the use of computers is mandatory.
Smce each job is quite simple (even if it requires many computa-
tions), microcomputers are most suitable for this application.

The communication path between the CCU and microcomputers
was called MICROBUS.

There is an important exception to the stated rule that no

ganglion may undertake actions without having been authori
by the CCU. g orized
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Figure 3. Reflex arc phenomenon

This exception is very similar to the reflex arc phenomenon that
takes place in many animals, including man. If, for instance, some-
thing hot is touched, the hand is often retracted before pain is felt.
This is because stimuli from sensorial organs in the hand cause an
immediate contraction of arm muscles. The brain is not involved in
this process, which takes place at the spinal cord level.
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Something similar happens in SUPERSIGMA. If an emergency
situation is detected (for instance, when the arms attempt to over-
come end-of-rail protections), a signal is directly sent to the micro-
computer that controls the motor concerned. The motor is im-
mediately stopped. The CCU is informed of what has happened,
but is not involved in the emergency procedure (see Fig. 3.). This
is done for two main reasons: the first is that sending the emergency
signal to the CCU and then back to the microcomputer seems use-
less, the second is that, as it will be shown, the CCU behavior is not
always completely known, since a user program, i.e., a program
that may contain errors, is running on it.

The intelligence that drives SUPERSIGMA is then split into two
levels: the higher level (CCU) has complete control of the lower
one (microcomputers), with the exception of the damage preven-
tion system just described [3].

The Microcomputer Array

The first implementation of the array was based on National Semi-
conductors SC/MP microprocessors. The array has now been rebuilt
using INTEL 8748 single-chip microcomputers. Since there are
some slight differences in the interconnection system, the latter
implementation will be described.

Communication Protocol

Communication between the CCU and microcomputers takes place
in the form of commands from the CCU to the microcomputers
and of data and status signals in the opposite direction.

The communication protocol was chosen in such a way that it
would minimize hardware requirements. Speed is not a problem,
since the mechanical nature of the hardware used to drive implies
that the actuation of each command is always slow compared to
the transmission time.

The need to minimize hardware suggests the use of a bus struc-
ture reaching all microcomputers (see Fig. 4.).

Two assumptions were necessary in order to have a simple and
straightforward communication protocol.

The first is that only *free’” microcomputers may receive com-
mands. This means that microcomputers that are executing a
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previously received command will be virtually disconnected from
the array until the execution of the command has come to an end.

The second is that each command is directed to a single micro-
computer.

The quantity of information carried by each command depends
on the nature of the command itself. It has been found that five
8-bit words are sufficient to contain the longest possible command.
These words are transmitted on an 8-bit bus with an asynchronous
protocol. This requires the use of an additional line (/DATA
READY) to provide initial synchronization.

The protocol (See Fig. 5.) is as follows:

1) The first byte of the command is sent on the bus.

2) /DATA READY line is dropped in order to indicate that

the transmission of a command has been initiated.

3) /DATA READY is raised, so that if a microcomputer be-
comes free at this time it will not receive the command,
since that could be misinterpreted, if the first byte is
missed.

4) Following words of the command are sent on the bus at
fixed intervals.

Free microcomputers continuously test /[DATA READY line. '

As soon as they detect that it has been dropped, they get five words
from the input port connected to the bus and store them in their
internal memory.

Timing is chosen in such a way that each command may be re-
ceived by each free microcomputer, no matter at what time the
microcomputer detects /DATA READY signal. As happens for
asynchronous protocols, slight differences in the speed of micro-
computers do not cause errors; traditional crystal oscillators are
employed without causing problems.

Once it has received a command, the microcomputer must decide
if the command was addressed to itself. For this reason, each
microcomputer is assigned a unique number, and this number is
always contained in the first word of each command.

This procedure allows 256 microcomputers to be connected to
the bus: a number that seems sufficient for any application.

In order to let the CCU know if microcomputers are free or
busy, a certain number of “status lines” (see Fig. 6.) were added
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to the system. These lines (typically two per microcomputer)
should directly reach an input port of the CCU. In order to minimize
wiring and I/O ports on the CCU, status lines are multiplexed in
such a way that 16 input bits and 16 output bits on the CCU allow
the complete connection of 80 microcomputers to MICROBUS.

The full connection of 256 microcomputers requires only two
additional output bits from the CCU.

Other solutions, such as coding statuses into messages, did not
seem feasible because status informations are treated by the CCU
as flags, rather than as events.

Moreover, it may happen that more than one microcomputer
change state at the same time, and this would make coding more
difficult.

Two status lines per microcomputer were chosen instead of one
because, for motor microcomputers, it is important to state not
only if the device is free or busy, but also if the previous command
was correctly executed.

The meaning of status lines is as follows:

STATUS A STATUS B MEANS

0 0 Free

0 1 Busy (previous command still
under execution)

1 0 Free, but previous command
was aborted because there
has been an attempt to over-
come rail limits

1 1 Free, but previous command

was aborted because force
acting on the hand was ex-
cessive (possibly because the
hand has hit something un-
expected)

Status codes were chosen in such a way that a logical 1" on
status line A means that something abnormal has happened, and
that the normal program execution may not continue.

This made it possible to OR-tie all status A lines from motors
into an interrupting input of the CCU. Actions undertaken upon

L'
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reception of such interrupt depend on the program stored in the
CCU. This is the implementation of the ‘‘reflex arc’ described in
the previous section.

We have seen how commands are transmitted to microcomputers
from the CCU, and how the CCU is informed about the status of
each microcomputer. It will be shown now how data may be trans-
mitted from microcomputers to the CCU (see Fig. 7.).

This latter is specially significant for sensors microcomputers, to
be discussed later, but applies also to motor microcomputers. For
instance, it may be necessary for the CCU to know the position of
one motor at the time a crash was detected (Status 1-1).

Since data are transmitted over the same bus that carries com-
mands, a protocol must be stated in order to avoid conflicts (for
the sake of simplicity, no hardware bus arbiter was implemented).

This protocol is based on a “speak when you are requested to™
principle. In other words, microcomputers must receive a special
command from the CCU before they can send data over the bus.
It is then the responsibility of the CCU to interrogate one micro-
computer at a time, and to send no commands until the answer is
complete,

Under normal operating conditions, answers flow is only a small
fraction of the total data flow on MICROBUS; the communication
protocol may then be slower and simpler than that used for com-
mands. Moreover, the number of bytes for each answer is not yet
known, since new sensors are being studied. Motor microcomputers
may answer with only two bytes, since sixteen bits are sufficient
to represent the position of a motor, but complex sensors may re-
quire a greater amount of information to be sent for each answer.

Since the bus is bidirectional, line buffers must be reversed when
an answer is to be transmitted. This is done by means of /ANSWER
READY line, that is also used as a strobe for the CCU (see Fig. 7.).

The protocol (see Fig. 8.) is as follows:

1) The CCU sends the appropriate command to the concerned
microcomputer and waits for the answer.

2) The microcomputer drops /ANSWER READY line in order
to reverse line buffers and to indicate that a byte is being
transmitted. To make this possible, all microcomputers are
connected to /ANSWER READY line through a port that
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is normally in the high impedance state.
3) At thesame time, the microcomputer sends the appropriate
answer byte on the bus.
4) Upon detection of the /ANSWER READY signal, the CCU
samples the bus, thus obtaining the desired information.
5) The microcomputer raises /ANSWER READY to restore
the initial conditions.
If the answer is one by te long, normal operation is resumed after
this step; otherwise, steps 2, 3, and 4 are repeated as required. This
of course means that the CCU must know how long each answer is.

Microcomputer Structure

As already shown, the communication path between the CCU and
microcomputers is implemented in a very simple way. From a hard-
ware point-of-view, the connection is also very simple (see Fig. 9.).

5V reg Unreg. supply

e /DATA READY

SINGLE~CHIP MICROCOMPUTER pe—+————————» COMM.-DATA BUS
e b ) /ANSKER READY

STATUS LINES

INTERRUPTING

CONTROL LINES

Figure 9. Microcomputers block diagram

= — INPUTS FROM SENSORS
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One of the three on-chip bidirectional ports of 8748 is used for
the MICROBUS connection. The port is bidirectional, and no inter-
face is needed between the chip and the transmission line.

A testable input (TO) is directly connected to /DATA READY
line, and one bit of I/O port 3 is connected to /ANSWER READY
line. As already pointed out, this port is normally in the high im-
pedance state.

Two output bits (P23 and P24) are used to drive status lines.

In order to maintain ports load within fan-out capabilities of
microcomputers, it was stated that no more than 10 microcompu-
ters should be connected to the same bus. If a higher number of
microcomputers is required, regenerators must be placed on the
bus. It is important to note that, when answers are being transmit-
ted, only those regenerators that are between the CCU and the
answering microcomputer must be reversed. This is simply obtained
by the OR connection shown in Fig. 10.

Although the robot works in an industrial environment, where
electrical noise is always present, the control system is not affected
because the bus is always quite short and data rate is comparatively
small. This allows a long time for overshoot settling before a line is
tested, and also allows the insertion of strong capacitive loads where
required in order to minimize spikes effects. |

In fact, no errors were detected in the whole life of the machine—
about 600 working hours to date.

/DATA READY

N
%

COMM, -DATA BUS ]_
+5V

/ANSWER READY —— /]
Nl

Figure 10. Regenerators block diagram




64 Riccardo Cassinis

Microcomputer Interfaces

Interface circuitry depends upon the task each microcomputer
must perform. The two most significant interfaces that have been
built will now be described.

The first is motor’s interface.

SUPERSIGMA employs stepping motors for moving the arms:
although these motors do not require feedback, and stability pro-
lems do not arise, these motors are quite difficult to drive because
they need to be carefully accelerated to their working speed in
order to avoid loss of position synchronism between the rotor and
the statoric magnetic field. The same care must be taken for de-
celerating and stopping them.

In order to obtain the best performance from each motor, the
speed-versus-time curve should have a very smooth connection be-
tween acceleration and constant speed parts, since this is a very
critical point, where loss of synchronism may occur (shaded area
in Fig. 11).

Moreover, it is desirable to have the option of using various ac-
celeration and deceleration curves, in order to accommodate, for
instance, different loads on the hands of the robot.

VA

7 Y,
T /115

e

s
Figure 11. Typical speed-versus-time curve for a stepping motor movement.
Shaded areas indicate critical points.
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5v r@’; Unreg, supply
o0, N R

» MICROBUS
F———————% CONNECTION
e LIRS

>

DIRECTION

8253 TIMER - COUNTER b . STEPS

Figure 12. Motor microcomputers block diagram

The need to obtain such complex and often parametric curves
was the main reason why it was decided to use microcomputers
instead of random logics.

Transducers that feed motors are of standard Olivetti produc-
tion. They require two signals to be fed to their input: the first
indicates the desired sense of rotation, the second causes the motor
to step every time a pulse is applied to it. It is the user’s responsi-
bility to generate appropriate pulse trains.

In order to eliminate resonance phenomena in the motors, the
“half step” driving technique is employed. 400 pulses are needed
to obtain a complete rotation of the motor’s shaft; this means that
the resolution of the motor is .9 degrees per step. With the actual
gear system, this leads to a linear resolution of .0375 mm per step.
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Since the desired linear speed of arms is at least 500 mm/s, top
motor speed must be about 15,000 steps/s.

The motors manufacturer states that, at this speed, the torque
furnished by the motor is nearly zero; great care must then be taken
in order to avoid synchronism losses.

It is clear that a microcomputer alone may not produce pulse
trains at such frequencies with satisfactory characteristics, and that
some additional citcuitry must be used.

Among the many possible solutions, a programmable rate genera-
tor was chosen. In the first implementation, random logics were
used, and caused some problems due to the complexity of the
circuit. Fortunately, a device that is perfectly suitable for the pur-
pose is now available. This is the INTEL 8253 programmable
counter. It may be directly connected to the microcomputer.

This means that the whole control system for a stepping motor
consists of only three integrated circuits, the third circuit being a
TTL OR gate used to link together the two interrupt inputs of the
microcomputer.

These inputs are used to stop the motor when an emergency is

detected; this applies to the end-of-rail and excessive force situa-.

tions already discussed.

A block diagram of motor microcomputers is shown in Fig. 12.

From the firmware point-of-view, program running in motor
microcomputers is rather intricate, due to the need to generate
transcendental functions and their reciprocals.

The normal command sent to motor microcomputers contains
only two units of information: the number of steps to be performed
and the direction of the movement.

The microcomputer must then decide, on the basis of the length
of the movement, the maximum speed to be reached and the shape
of the acceleration and deceleration curves. If the movement is
very short, it is performed at a constant low speed; if longer, the
motor is accelerated until a computed speed has been reached, and
then decelerated until it stops. If the computed speed exceeds the
maximum allowable, a constant speed movement is inserted be-
tween the acceleration and deceleration segments (see Fig. £33

If an interrupt is sent to the microcomputer while the motor is
running, the movement must be stopped as soon as possible, that
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Figure 13.  Typical acceleration curves for various length movements

is, following the steepest allowable curve.

It should be remembered that a stepping motor may not be
stopped simply by suspending the pulse train, since this would
most probably cause a loss of synchronism that would increase the
stopping time, rather than reduce it.

Some other functions may be performed by motor microcompu-
ters. For instance, a movement may be performed at constant
speed, regardless of its length, or speed limits may be imposed
These special functions are indicated by appropriate op-codes ir;
the command.

! Another important function is the origination. Since no posi-
tional feedback is provided in SUPERSIGMA, it is impossible to
know the position of the arms when the machine is first turned on.
'[.’he onl)f way to know this is to bring each axis into a known posi-
tion. This operation is automatically performed by motor micro-
computers upon reception of a special command that causes the
motor to be moved in the backward direction until the end-of-rail
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detector is activated, and then forward until it is released.

At this point, the position of the arm is known, and may be
traced along successive movements, unless losses of synchronism
occur.

Force sensors [4] are another example of how microprocessors
may be useful in solving difficult tasks.

Force sensors are presently mounted on the wrists of the robot,
and measure the three main components of forces acting on the
hand of the robot. Their purpose originally was to make the robot
capable of “finding” holes whose position is not perfectly known.
This situation is very common in assembly operations. Since the
robot has no visual feedback, it is impossible to carry on the inser-
tion of a piece in a hole if tolerances are higher than a certain limit.
The original idea was to perform a number of attempts in slightly
different positions, measuring forces at the end of each attempt:
a high force would indicate that the piece had not entered the hole.

The same force sensors may also be used for safety purposes. It
was thought that, during ‘“‘free” movements, no forces may act on
the hand, except forinertial forces. It was then decided to continu-
ously test force sensors in order to determine if unexpected forces
were present. The presence of such forces would mean that the
hand had struck something, and the first thing to do would be to
stop the motor.

Inertial forces that affect force measurements during accelera-
tions may be eliminated by combining each force sensor with an
accelerometer and mixing the two analog signals in an appropriate
way.

Since force sensors are analog devices, an analog to digital con-
verter is needed. Signals from force sensors are first multiplexed in
order to use only one converter.

The associated microcomputer controls the multiplexer and the
converter (see Fig. 14.). Since force sensors must be continuously
tested, the microcomputer is always “busy.”/DATA READY line
must then be connected in this case to an interrupting input of
the microcomputer so that is may receive commands.

These commands may be of two kinds. The first is “‘tell me the
value of force actingon axis. .., and is quite simple to understand.
The second command is used when operations that require force
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Figure 14. Sensors microcomputers block diagram

to be issued from the robot’s hands are to be performed. Under
normal conditions, the force threshold that causes an interrupt to
be sent to the corresponding motor microcomputer is quite low

so that crashes may be detected as soon as they occur. If force has:
tq be issued, these emergency thresholds must be changed, other-
wise the motor would stop as soon as the operation is initiated.
The command is then used to change thresholds for concerned

axzs, and to restore them to standard values when the operation
ends.,

Object Detector

An interesting device that has been added to the robot is a very
simple object detector that may be used for a variety of purposes.

A lamp-photodiode couple was mounted in the fingers of the
robot (see Fig. 15.). Its original purpose was to test if an object
was present in the hand at some points of assembly operation. It
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Figure 15. Object detector

was noticed, however, that the same sensor could be used for more
sophisticated operations, such as the lookup of pieces, or even to
measure the dimensions of such pieces. This is possible because the
coordinates of the hand are always known. Thus, by combining a
few program instructions the task may be easily solved.

As an experiment, a program was written that looked for chess
pieces randomly placed along some lines on the working board of
the robot, measured their height, and placed them accordingly on
other lines (See Fig. 16.).

The most obvious application of this sensor is to eliminate some
parts feeders, or to substitute them by simpler ones, since for many
objects an exact initial position is not required.

Programming the CCU
The problem of programming robots has often been neglected by
manufacturers.

Besides those methods that are quickly becoming obsolete (such
as using pinboards or similar devices), three basic methods are
presently used: teaching-by-doing, console programming, and

An Example of a Distributed Intelligence Discrete Process Controller

Experimental setup for object detectors testing.

Figure 16.

This is a long-exposure picture taken during the program execution. The only

light used is that furnished by object detectors lamps. Light beams show movements of

Note:

the arms. Pieces to be searched are on the left of the table; they are brought to the inter-

mediate position by the left arm, and to the final position by the right arm.

71
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language programming.

The first method is extremely useful when complex movements
are to be described, as in painting or welding robots. It is obvious
that with this method only straightforward programs may be
generated. The impossibility of implementing conditional branches
severely limits the possibilities of this method.

Console programming is based on a specialized console that
allows programs to be inserted in the robot by pressing appropriate
pushbuttons or similar devices. This method allows full program-
mability of the robot, since conditional and unconditional branches
may be described, but the language level is rarely higher than that
of a small programmable calculator.

The third method implies normal computer programming tech-
niques. This method was chosen by us for many reasons, among
which the most important was that the robot must not be considered
as a computer peripheral, but that the whole machine be regarded
as a special purpose computer.

This allows a great simplification of all programming problems,
because such problems may be solved with the techniques commonly
used in normal programming [5], [6].

Since no computer exists with the appropriate instruction set
for driving the robot, the first step was to design such a computer.
In order to avoid the use of microprogrammable computers, it was
decided to use a virtual machine implemented on a normal mini-
computer. The definition of the instruction set of this virtual
machine was quite a difficult task, since its level has to be low
enough to allow complete control of the machine, yet high enough
to be efficient and to simplify the design of compilers for high-level
languages. Furthermore, it should provide multiprocessing facilities,
since the only way to carry on parallel processes is to describe them
as separate tasks and to use a set of synchronizing primitives to
provide correct execution sequences. In the first implementation
of the system we started with the definition of the high level
language, then designed a virtual machine that could interpret this
language in the simplest possible way.

At this time, the control system was under construction, and its
features were not yet completely known. For this reason, a quite
general language was chosen. It was named MAL (Multipurpose
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Assembly Language), since it was not oriented to any particular
application, and its level was similar to BASIC language [7].

Syntax is about the same as for BASIC, with some minor modifi-
cations (for instance, variable names may be as long as desired, in
order to increase the program’s readability); some BASIC features
were eliminated (such as array management) because they were
useless in robot programming, and some added. Additions included
all the instructions that drive the robot (MOVE, ACTUATE, etc.),
and provisions for parallel task execution.

The resulting language is quite efficient for assembly operations,
since it allows a simple description of the tasks to be performed.

As stated above, MICROBUS capacity is much higher than that
required to drive SUPERSIGMA. Moreover, SUPERSIGMA alone
isunable to accomplish any task, because it needs devices that bring
pieces to it, and that withdraw assembled parts. We then extended
the idea of robot to the whole system that is used to perform the
process, rather than to the single machine. This is possible, since
MICROBUS may drive a great variety of devices, not necessarily
robots.

The whole process may then be regarded as a number of tasks,
each accomplishing a definite job. The only problem is to synchro-
nize these tasks in order to have a correct execution order. The
same technique used in real time systems may be applied here with
no modifications. In MAL, we used flags to synchronize processes,
but any other method would suit equally well.

The resulting program is a number of “boxes,” each describing a
different task, tied to each other by means of synchronizing primi-
tives.

Originally, the CCU was implemented on a LABEN 70 mini-
computer. In the new implementation, it will be replaced by a
Digital LSI 11, in order to have a greater efficiency and a higher
computing speed.

Since MAL is written in FORTRAN, it may be easily transferred
on the LSI 11. Since our research program includes new, higher-
level languages for robot programming, we also decided to imple-
ment on the LSI 11 a new virtual machine written in real-time
BASIC. This can be done in two ways: the first is to add to real-
time BASIC a few functions that provide MICROBUS driving, and
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to write robot programs in BASIC; the second is to define the
virtual machine and to implement it by using BASIC. The second
solution is more complex, but allows the system to be exactly
tailored to our needs.

Very high-level languages, such as POINTY [8], will be imple-
mented on this new machine.

Experimental Results

Since the first implementation was terminated, SUPERSIGMA has
worked for about 500 hours, while many experiments were being
carried out.

The behavior of the machine has always been good, in spite of
its “home made” appearance. The greatest problems encountered
were related to poor power supplies or similar trivial causes.

Some experiments were carried out to measure MICROBUS
saturation. As may be seen from Table 1, the execution time of
some test programs was compared with the total number of com-
mands issued by the CCU.

Table 1

MICROBUS Saturation for Various Robot Programs

Maximum Commands Rate: 10,000/sec.

MICROBUS
PROG., Arms Commands  Seconds Com/Sec Saturation
ORD 1 751 167 45 .045%
SCP1B 1 328 56 5.86 .059%
SCP2B 2 394 36 10.94 .109%
PRCO 2 1600 260 6.15 .062%

[t was seen that in the worst case (program SCP2B, that continu-
ously moves the two arms of the robot over very short distances,
so that execution time of every command is very small), MICRO-
BUS was running at only .1% of its maximum capacity.

CCU saturation mostly depends on the number of arithmetic
calculations required by each task. No precise measurements were
taken, but it was estimated that at least 50% of the total time is
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spent idling, because no commands may be issued, since micro-
computers are still busy executing previously received commands.

Reliability of the system is good, as the number of components
employed is very small. This is especially true of the new imple-
mentation, because the introduction of single-chip microcomputers
and of programmable rate generators has reduced the total compo-
nent count by a factor of about 15. The weak part of the system is,
from this point-of-view, stepping motor power supplies. Here, high
integration is impossible, due to the high powers employed.

Due to the modularity of the system, fault diagnosis is extremely
easy. If performance is abnormal, the fault may be located using
very simple techniques. Standard test programs may be used for
the CCU. If the fault is not in the CCU, it obviously is at a lower
level. Should it be in MICROBUS, it is easy to decide whether it is
in interfaces or in microcomputers. Any failure of components in
interfaces will cause malfunctions of groups of microcomputers,
while a faulty microcomputer will only affect the performance of
related devices. Faults located at transducer level may be found
using suitable techniques that depend on the nature of the trans-
ducers.

It is also possible to include self-checking procedures for the
CCU and microcomputers. These procedures may be run through,
for instance, when the system is first turned on.

Conclusions and Future Developments

The system described is an experimental device that has proved to
be suitable for use in industrial robots.

The structure of electronics and of the components employed
are such that the engineering work for industrial production of the
system would be quite reduced.

Moreover, the system may be employed in a great number of
control systems where centralized control and distributed intelli-
gence are necessary.

Besides the main research program, that concerns the hardware
and software architecture of the robot, two other lines of research
are being carried on: one is of a mechanical nature and will be con-
cerned with the improvement of the existing mechanics and the
addition of some degrees of freedom to the hands. (The final num-
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ber will be 6 degrees of freedom per hand.)

The second is the development of a vision system to be connected
to SUPERSIGMA or to other robots. At first this system will be
used to recognize the kind and the position of objects being carried
to SUPERSIGMA by a conveyor belt, thus eliminating the need of
positioners for some classes of objects.

The vision system will later be used as an aid to assembly opera-
tions.

In parallel with this work, we are also carrying out a program of
research on artificial intelligence. This program is particularly in-
tended as a means of automatically solving emergency problems in
robots, and of implementing a natural language comprehension
system that would yield a much simpler method for programming
the robot.

Acknowledgments

The research on SUPERSIGMA required the cooperation of many
people over a period of more than three years.

Credit is due to Prof. Marco Somalvico, and to all those graduates
and students whose work and ideas made the realization of the sys-
tem possible: Paolo Dalla Vecchia, Giovanni Domenella, Alberto
Evi, Giuseppina Gini, Maria Gini, Renato Gini, Dario Giuse, Enrico
Pagello, Lorenzo Schnickel, and Massimo Tomaini.

This work was partially supported by the National Research
Council.

References

1. A. d’Auria, M. Salmon: SIGMA: An integrated general purpose system
for automatic manipulation. Proc. Sth 1.S.I.R. Chicago, 1975.

2. R. Finkel: Constructing and debugging manipulator programs. Stanford
Artificial Intelligence Laboratory, Memo AIM-284. Stanford, 1976.

3. R. Cassinis, L. Mezzalira: A Multi-microprocessor system for the control
of an industrial robot. Proc. 7th L.S.LR. Tokyo, 1977.

4. R. Cassinis: Sensing system in SUPERSIGMA robot. Proc. 9th 1.S.LR.
Washington, 1979.

5. R. Bisiani, R. Cassinis: The development of a multi-micro processor sys-
tem to be used in the control of an industrial robot. Proc. MI-MI *76.
Zurich, 1976.

An Example of a Distributed Intelligence Discrete Process Controller 77

6. M. Salmon: SIGLA — the Olivetti SIGMA robot programming language,
Proc. 8th 1.S.I.R. Stuttgart, 1978,

7. C. Gini, M. Gini, R. Gini, D. Giuse: Introducing software systems in in-
dustrial robots. Proc. 9th [.S.1.R. Washington, 1979,

8. T. O. Binford, et al.: Exploratory study of computer integrated assembly
systems. Stanford Artificial Intelligence Laboratory Memo AIM-285.4,
Stanford, 1977.



