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Abstract

This paper presents a visual homing algorithm for autonomous robots inspired by the behaviour of bees and other social
insects. The homing method presented is based on an affine motion model whose parameters are estimated by a best matching
criterion. No attempts are made to recognize the objects or to extract 3D models from the scene. Improvements in the algorithm
and in the use of colour information are introduced in order to enhance the efficiency of the navigation vector estimate. Tests
and results are presented. © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

Entomological studies about social insects (in par-
ticular bees, ants and wasps) have discovered some
mechanisms of visual navigation that can be useful
in robotics [4,7-9]. Several interesting considerations
can be made regarding the ability of many insects to
return to the precise locations for foraging or for find-
ing home [12].

According to experiments on ants and bees [1], an
insect fixes the location of objects surrounding a place
by storing a sort of snapshot of the panorama taken
from that place. The snapshot of the environment does
not encode explicitly the distance between objects or
between objects and target. Other experiments on bees
proved that the insects remember not only the apparent
dimension and position of objects surrounding a place
[1], but also their shape, pattern and colour [3].

In order to return to specific places, social insects
and bees in particular, exploit two different navigation
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methods: dead-reckoning and visual homing naviga-
tion [12]. The dead-reckoning method is exploited by
extracting information about the homing vector using
polarized light [11] and integration of image flow [9].
The visual homing method is used in the final stage
of the navigation, for a precise approach to the goal,
when dead-reckoning does not have the required de-
gree of precision.

Interesting computational models introduced to ex-
plain how bees exploit the visual homing navigation
were proposed in [1] and subsequently refined in [2].
The results of these models, simulated on a computer,
strongly resemble the actual behaviour of bees. In the
above models, bees learn the goal point position taking
a black and white picture of the place. Subsequently,
through a comparison between the goal snapshot and
the current image, bees compute the movements for a
precise approach to the target.

The visual homing method presented in this paper,
follows the same approach and can be divided in to
two phases:

— Matching phase. The bee compares the stored snap-
shot of the place surrounding the goal with the snap-
shot perceived at the moment.
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— Navigation phase. The differences in position and
in dimensions between objects in the two images
drive the bee towards the goal.

Both the matching and the navigation phases have
been implemented and tested. The algorithm is pre-
sented in the following section and the tests are pre-
sented in section 3.

2. Matching and navigation

As presented, the implemented algorithm starts
from the Cartwright and Collett [2] and Wittman
[13] results introducing the use of colored images.
In order to efficiently use the colour images of the
environment with large amounts of information and
complexity, some constraints have been introduced:
— the heading of the camera is kept constant by some

external means;

— the algorithm can only be used in the proximity of
the target (when some parts of its neighbourhood
are visible).

As in [13], in fact, the images have been collected
with the same orientation. This is done by keeping the
camera with the same heading during the navigation
task. Moreover, the robot navigates in a flat indoor en-
vironment so that the camera height is constant. This
allows further simplifications in the affine model, dis-
cussed later.

The main idea is that an estimate of the vector point-
ing from the current position to the goal could be com-
puted comparing positions and amplitude of matching
areas in the considered images [1]. This vector derives
from a matching between the goal image and the actual
one, reconstructed using an affine motion model. All
the possible affine transformations and shifts of the ac-
tual image in the allowed range are computed and the
one that best fits the goal image is chosen. From this
transformation the algorithm computes an estimate of
the robot displacement from the goal position.

2.1. The projection on the camera plane and the
affine model

The relationship between objects in the environment
and their positions in the grabbed images is described
by the following camera model derived from the cen-
tral projection reference system [10], as shown in
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Fig. 1. Object projection shifts due to camera movement.

Fig. 1. Let p be a point of the environment and P its
projection on the camera image plane. The relation-
ship between the two points is:

x=F.%, y=r.2

4 z
where X and Y are the co-ordinates of the P point
in the image plane, x, y, z the co-ordinates of the p
point in the 3D space and F is the focal length.

An affine model that takes into account transla-
tions, compressions and deformations of the object
projections in the image plane caused by a camera
translation is described by the following equations:

Sx(X,Y)=aox +aix - X +axx - Y,
Sy(X,Y) =apy +ary - X +azy - Y,

where Sy and Sy are the displacement components in
x and y directions, respectively, (X, Y¥) the pixel co-
ordinates, apy and apy the translation parameters and
ax, arx, ayy, ary are the deformation parameters.

2.2. The implemented model

The above mentioned constraints, fixed heading and
constant height, allow the use of a simplified model. In
the considered environment a large amount of objects
(tables, printers, shelves, etc.) are fixed, and it is then
reasonable not to take into account any object rotation.
Therefore, the model becomes

Sx(X,Y)=aox +a1x - X,
Sy(X,Y) =aoy +azy - Y,
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where apyx, apy represent translations in pixels and
ax, azy represent expansions (a-dimensional). More-
over, the camera has been always placed at the same
height (about 1.2m) and, due to the absence of the
vertical camera movement, the term agy is null. An
apparent vertical shift in the image plane can be in-
troduced by the change of object distance and is de-
scribed by the expansion parameter azy.

2.3. The matching algorithm

In the following step, the homing algorithm finds
the parameter values that minimize the following mean
square error (MSE) on the whole image [5]:

1
MSI—:=H 2 ELXF)
(X, Y)e8s :
+E (X, Y)+ Ep(X,Y),

with
E e p(X,Y)=[Lirg.0)(X,Y)
—De )X+ Sx, Y + Sy,

where M is the number of couples (X + Sx, ¥ + Sy)
still in the image plane S, I) and /> the images, r, g
and b the chromatic components and Sy and Sy are
the estimated displacement vectors for each pixel.

In order to speed up the parameters computation
and at the same time allow the estimate of large dis-
placement vectors, a multi-resolution pyramidal tech-
nique has been implemented as in [13]. According
to this technique the image at level I is obtained by
subsampling by a factor 2 the image at level I-1.
The displacement estimate starts from the image at a
lower resolution going up the pyramid by maintaining
the dimensions of the estimate intervals unchanged.
The parameters estimated at level I are subsequently
used at level I-1 as offsets for the relative estimate
ranges. Each subsampling operation is preceded by a
low pass filtering, with the aim of excluding possible
spatial aliasing. The filter used is a seven coefficients
Gaussian filter [6].

The estimate ranges and the multi-resolution levels
are chosen according to the maximum displacement
considered. It is possible to calculate the displacement
components according to the relationships

Ay = K - apx, :=H-ax.

Pre-filtering Pre-filtering
& &
Decimation Decimation

Parameters
estimation

H —p
K —

Displacement
calculation

|

t

Fig. 2. Flow chart of the algorithm.

The values of K and H are determined for a more
efficient navigation through an initial setting phase,
performed by a series of known displacements around
the goal position. Using the whole image and not a
single object in the scene, the values of H and K
are mean values concerning all the objects composing
the scene. Due to the null value of the vertical shift,
vertically decimated images of a factor 2k have been
used. A simple flow chart of the described method can
be seen in Fig. 2.

The noise in the acquired images is mainly due
to the following factors: people moving in the room,
changes of displays on computer monitors and lights
being switched on and off. The major error contribu-
tion in the matching of two images acquired in the
same point comes from the moving objects (people
walking, etc.) and from occlusions that cause a “punc-
tual” error higher than the average. For this reason
in the final matching phase the MSE over the whole
image is substituted by a new MSE computed only
over the pixels lower than the first MSE previously
computed.
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Fig. 3. MSE varying the parameters of the affine model.

Fig. 3 shows the MSE values, which are the re-
sults of the comparison between the goal image and
all the possible reconstructions of the actual image
through all the allowed parameter values of the affine
model.

An example of an image used by the algorithm is
shown in Fig. 4. It is acquired in the goal position.
The image in Fig. 5 is obtained by low pass filtering
and decimating image in Fig. 4. Image in Fig. 6 is
obtained by low pass filtering and decimating an image
acquired in a generic starting point of the navigation
area.

3. Tests

The proposed model has been tested in two different
ways: complete navigations to the goal position from
three randomly chosen starting points and the compu-
tation of the first navigation step from a grid of points
in the test area.

In all tests, the values of parameters H and K, after
the model calibration, are H = —1.8cm/pixel and
K = 680cm. Anyhow an accurate estimate of the
parameters H and K is not a necessary step for the
navigation. Their values affect the navigation vector,
and this influences the number of steps required to
reach the goal position, not the navigation convergence
to the target.

The following values have been chosen for the pa-
rameters increment in the pyramidal algorithm:

Fig. 4. Goal position image.

Fig. 5. Vertically subsampled goal position image.

Fig. 6. Vertically subsampled starting point image.

Aapy = +3[pixel]

with increment dagy = 1 [pixel],
Aayx = £0.5[pixel]

with increment da;y = 0.05 [pixel].

With these values the system resolution is +=32.38 cm
on Z-axis and =1.71 cm on X-axis in an area of 720 x
1440 cm. The image obtained by the camera is 384 x
288 pixels, the vertical under sampling is 4 : 1 and the
pyramidal structure used has five levels.

The results of a complete navigation process from
each given starting point can be seen in Fig. 7.
Navigation errors are reported in Table 1: after two
navigation steps they are below the maximum admis-
sible error in centimeters for the selected parameter
increment. The navigation phase is completed after
two steps, with a mean error of about Scm along a
path of about 720 cm, less than 0.7%.
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Fig. 7. Complete navigation test.

Table 1

Test errors

Navigation Steps Error
Pl 2 1.8
P2 2 8.1
P3 2 10.9

Vectors V),V2 and V3 represent estimated direc-
tion and distance of the goal from the starting points
p1, p2 and ps3. Estimates are not very accurate and
lead to points that can be quite far from the actual
goal, but, if the process is iterated, it quickly con-
verges to the target position. This algorithm does not
take into account obstacles: it only estimates the rel-
ative position of the goal with respect to the robot.
Actual trajectories should be computed using an ob-
stacle avoidance method.

In Fig. 8 the directions of the estimated displace-
ment vectors for the first navigation steps from some
starting points are shown. Almost all points show good
navigation behaviours. E.g., at point 32 a cupboard

- CUPBOARD (h=200cm)

. TABLE  (h=70cm)
W FRINTER {h=105cm)

720 cm

Fig. 8. Directions of every estimate displacement vector (vector
lengths are not shown).

occludes a consistent part of the image grabbed from
that point so the matching phase fails. A wider image
could overcome this situation.

4. Conclusion and perspectives

A visual homing method has been presented. This
biologically inspired method, starting from some well-
known models, implements a robust algorithm to es-
timate the relative position between the homing place
and the current robot position.

Particular attention has been paid to the use of the
method in real environments with small changes in the
object disposition, moving people, etc. To deal with
these situations a recomputation of the affine model
parameter estimate is done. No environment condi-
tioning is required.

The tests have shown good results in driving the
robot towards a goal position, but several improve-
ments are still possible.
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The simplified model that has been implemented,
for instance, does not take into account camera ro-
tations. A more robust navigation algorithm should
allow small rotations. An extension of the algorithm
could also deal with wide angular images, like insects
do.

Computation time and efficiency could also be im-
proved segmenting the images and trying to correlate
sets of particular objects as visual references for the
matching phase.
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