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Abstract

A self-localization system for autonomous mobile robots is presented. This system estimates the robot position in previously
learned environments, using data provided solely by an omnidirectional visual perception subsystem composed of a camera and
of a special conical reflecting surface. It performs an optical pre-processing of the environment, allowing a compact represen-
tation of the collected data. These data are then fed to a learning subsystem that associates the perceived image to an estimate of
the actual robot position. Both neural networks and statistical methods have been tested and compared as learning subsystems.
The system has been implemented and tested and results are presented. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the field of visual guidance of autonomous
robots, omnidirectional image sensors have been
intensively studied [19,20,22]. Having an omnidi-
rectional field of view in a single camera shot is an
appealing feature, but an omnidirectional device adds
heavy geometric distortions to the perceived scene.
In this case, a geometrical model based on naviga-
tion method originates complex tasks, thus wasting
the acquiring facilities of the omnidirectional device.
Exploration and map building using this approach
have the same problem as well [9].

A first simplification derives from the use of quali-
tative methods [17]. Complex visual navigation tasks
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fax: +39-030-380014.
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riccardo.cassinis@unibs.it (R. Cassinis).

in real environments can be managed more easily
by not trying to recognize objects around the robot,
but simply memorizing snapshots from specific places
and then correlating them with the currently perceived
image [6,12]. The typical problem of this approach
is the large amount of memory needed for learning a
route in an environment.

An omnidirectional image can be obtained by means
of different devices. Besides fish-eye lenses [15], sev-
eral mirror-based devices such as COPIS [18,19,21],
MISS [20] and HOV [22] have been developed and
studied taking into account the different geometric
viewfield distortions, but little attention has been paid
to the reflectance characteristics of the various devices.

The central idea of the present work is to use a con-
ical device, similar to COPIS, but with a different re-
flecting surface that allows the collection of simplified
omnidirectional visual information (Fig. 2).

The proposed system derives from an earlier joint
research program started at the Laboratory of Automa-
tion, University of Besancon (France) [1,2] and then
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continued at the Department of Electronics for Auto-
mation, University of Brescia (Italy) [3-5].

2. Aim and structure of the system

The aim of the system is to support the navigation
of an autonomous mobile robot estimating its position
in a previously learned working area.

Neither conditioning of the environment around the
working area nor accurate distance measurements are
required and no explicit and detailed maps of the world
surrounding the robot are made.

An interesting feature of the proposed system is
its ability to work even if the learned environment
changes. This holds true, provided that changes af-
fect only limited portions of the whole vision field
[5] (e.g. people walking around, objects that were
not present during the training phase or that were
removed thereafter, etc.).

The system is designed to work on a car-like au-
tonomous mobile robot and thus its position in a
two-dimensional space can be described by three
co-ordinates (x, y, #), representing the position of the
center point of the robot and its rotation with respect
to a fixed reference system. The system provides only

(x,y) co-ordinates. In order to make things simpler
 has not been taken into account so far and the
heading of the robot has been kept constant by other
means. However, due to the system robustness, small
undetected rotations (less than 5° in either direction)
can be easily tolerated [5].

Conical mirtror

Cameraq | mage

The whole system can be split into three sub-
systems: an optical subsystem that collects and
modifies the omnidirectional visual information, a
pre-processing subsystem that further simplifies the
data and a learning subsystem. The overall system
structure is shown in Fig. 1.

3. The visual perception subsystem

The visual information reflected by the cone is
grabbed with a CCD color camera facing upwards.
The cone-shaped mirror is placed at a known distance,
coaxially to the camera lens and the camera is focused
on the cone surface. The conical mirror collects infor-
mation from the environment around the robot in each
direction orthogonal to the cone—camera axis. The
resulting image is an omnidirectional view of a hor-
izontal section of the environment around the robot.

The cone surface reflectance characteristics and the
geometric distortions in the perceived image do not
allow the vision system to identify any object and
the self-localization is obtained from the perceived
image without any attempt to detect and recognize
objects in the scene. In fact the surface of the cone is
not a perfect mirror and the perception system is not
designed to obtain a perfect image of the environment.
Fig. 2 shows five conical mirrors with different surface
finishing (the smoothest at top left) and the way they
reflect the same scene.

A large amount of details in the image obtained by
a perfect mirror would increase the image elaboration

Local ization (x,4?

-

Learning system

Fig. 1. Structure of the system.
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Fig. 2. Images from different cone surfaces.

complexity. As high spatial frequencies are less in-
fluent on the performance of the learning system, it
is convenient to enhance the image blur. The surface
diffusion acts as a low-pass filter [11] and is responsi-
ble for the loss of information related to those objects
in the environment that are small or far away from
the robot. For these reasons, it was decided to use the
roughest available surface (bottom right in Fig. 2).
Diffused and constant lighting conditions are ini-
tially assumed in order to eliminate the effects of
time-varying and space-varying or color-varying
lighting. Pollicino has been devised for indoor en-
vironments such as offices, where the main source
of lighting is artificial and can be considered almost
constant. As any vision system, even this one is not

completely independent from changes in the environ-
ment illumination geometry.

4. The image pre-processing subsystem

The main goal of the image pre-processing is to
extract only a small amount of meaningful data from
the grabbed omnidirectional image.

Two kinds of pre-processing are performed on the
environment data: an optical pre-processing due to the
reflectance characteristics of the cone surface, before
the image grabbing, and a subsequent extraction of the
mean angular chromatic value from the grabbed im-
age. As it can be seen in Fig. 2, as the surface specular-

e ———————
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Fig. 3. The image pre-processing.

ity decreases, the image of each angular sector tends
to be a vertical superimposition of all the perceived
objects in a given direction. With the decrease of spec-
ularity fewer single objects are recognizable and the
only perceived information is the mean color of these
objects. The information obtained with a non-specular
cone enhances the color and the brightness reflected
by large surfaces in the environment, and large sur-
faces are more useful than small ones in determining
robot localization.

After the image grabbing, the pre-processing sub-
system divides the perceived image into the RGB chro-
matic components. The pixels around the center of the
cone do not carry useful information and are discarded
(Fig. 3).

A reference system transformation is then applied
from rectangular to polar coordinates and the circle of
the original image is mapped onto a rectangle (Fig. 3).
Each vertical stripe of the rectangle contains pixels
representing the chromatic characteristics perceived
in the related direction. Then each chromatic channel
image is split into 360 sectors of 1°. For each sector
and for each channel the mean chromatic lightness
value is extracted.

5. System operation

Pollicino uses the data extracted by the omnidirec-
tional vision system in two different ways. In fact the

system operation involves two phases: the supervised
learning of the working areas, and the autonomous
navigation of the robot in the learned areas.

5.1. Learning phase

During the learning phase the mobile robot is guided
all around the operating area. In this phase, the system
must acquire a number of images at known positions
in order to train the learning subsystem.

These data should be collected, either in a regular
or irregular way, all around the area to learn. The tests,
presented in the following sections, use regular grids
to acquire the images to train the learning subsystem.
Variations in the shape of these grids do not affect the
system performance. Influence of image acquisition
densities for the learning set in the output error has
been investigated.

If the area to be learned is large, complexity can
be kept low by splitting the area into several sections.
The learning phase can be realized by teleoperated or
externally guided procedures.

5.2. Execution phase

During the execution phase, the mobile robot can
use Pollicino to localize itself in the previously learned
area. Once an image from the environment has been
grabbed, the localization system uses the informa-
tion organized and stored in the learning subsystem to
obtain an estimate of the actual position.
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If the robot enters a new subsection of a long path,
the corresponding new mapping data, instead of the
old ones, will be used for the learning subsystem. The
system can easily switch between different learned ar-
eas, partially superimposed, when the estimated posi-
tion falls near the border of the current area.

6. The learning subsystem

The learning subsystem carries out an inverse map-
ping between the position of the mobile robot in a
subsection of the working area and the data extracted
from the omnidirectional image corresponding to that
position. The performance of the whole localization
system is measured by the error between the actual
position and the one estimated by the system.

Alternative learning systems based on neural net-
works and on statistical methods have been tested.

6.1. Neural network approach

The tested neural networks are supervised learning,
feed-forward, and back-propagation neural networks.
This kind of network is often used to map an arbitrary
input space to an output space when output values cor-
responding to teaching input are available [14]. If the
teaching input patterns are not too different, the kind
of proposed network provides a useful generalization
property that maps similar input patterns into similar
output ones. This type of network also exhibits a prop-
erty of graceful performance degradation that allows
a correct operation of the learning system even if the
input pattern is partially corrupt [14]. This implies that
the system can localize the robot even if the environ-
ment changes, provided that the changes affect limited
portions of the whole vision field [5]. All these proper-
ties enable the neural network to build an approxima-
tion of the desired mapping function using a limited
number of sample patterns in the learning phase.

6.2. Statistical approach

Two well-known statistical methods have been com-
pared with the neural networks: multiple linear regres-
sion (MLR) [13] and principal component regression
(PCR) [10]. The same set of images used to train the

neural networks has been used to calibrate the models
obtained by statistical methods. In order to compare
all the different methods, the same performance in-
dex set was used to evaluate models. Multiple linear
regression is tested here to predict co-ordinate values
from a linear combination of the chromatic character-
istics perceived, used as independent variables. The
PCR method applies the MLR to the same variables in
a changed space allowing a reduction of the number
of such variables.

6.3. The first learning system

The first learning system, called STDBP and used in
early stages of the research, was a feed-forward neural
network, trained with a back-propagation algorithm
[14]. Its structure is the same as STD3BP, presented
in the sequel, but, due to the fact that the first system
used a b/w CCD sensor, with an input layer simplified
to 360 input units, each one corresponding to the mean
lightness value of each 1° angular sector.

6.4. A neural network for color images

A modified version of the first neural network has
been developed to deal with color images. It is called
STD3BP and, as the previous one, it is a feed-forward
neural network trained with a back-propagation algo-
rithm. STD3BP derives directly from STDBP, with an
input layer three times larger. It is composed of 360 x 3
units, one for each 1° wide angular sector and for each
chromatic channel. This network, shown in Fig. 4, has
two hidden layers and an output layer of two output
units for the robot co-ordinates. Each hidden layer is
completely connected to the following layer and it is
composed of units with a sigmoidal activation func-
tion. Each unit in the first hidden layer gets its inputs
only from a group of units of the input layer, thus
forming a cluster, with input clusters partially super-
posed. This superimposition makes the neural network
more dependent on the angular position of the values,
allowing a more precise estimate of the robot position.

6.5. Opponent color model neural network

The last neural network, called BIONET, is inspired
by a color perception theory and its input layer is real-
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Fig. 4. STD3BP structure.

ized according to the relative neural model of the hu-
man visual system (retina and cortex) [8.16], shown in
Fig. 5. This model can be divided into two stages. The
first stage collects chromatic inputs coming from the
three different types of retinal cones, long (L), inter-
mediate (I) and short (S). The tri-stimulus theory as-
sociates them approximately with the RGB chromatic
channels. The following stage of the model is made
of two “opposite chromatic” units (red—green [r—g]
and yellow-blue [y-b]) and one “opposite achromatic™
unit (black—white [w-bk]). The links between the two
stages are realized by excitatory ( +) and inhibitory (—)
connections. This model is implemented in BIONET

to the brain

Fig. 5. Opponent color perception neural connections model
(BIONET).

like in Fig. 6, with non-adaptive connections between
the input layer and the first hidden layer.

6.6. Statistical methods

The same image data sets that were used for neural
network tests were also used for the statistical meth-
ods. For these methods it was not possible to use 360
sectors as in neural network tests, since the average
number of acquired images was not enough for the
calibration. For both MLR and PCR methods a choice
criteria for the number of sectors to use has been

360x3 units

Input
layers

oooo hidden y-b

Completely
36 units ok
o e smomswunssnonasssssenssssnsscassi il ELEN
Completely
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|_ll]ll'.lllllx&llllll!lll]llllllll‘llj_] hidden 2
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connected

m Qutput
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2 units
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Fig. 6. BIONET structure.




adopted. It is presented in Section 9 and the resulting
values are shown in the tables of Section 9. Accord-
ing to the number of sectors, to the density and to the
chromatic component, the average pixel values in each
sector has been computed and used as angular data.

The MLR method uses the patterns in the training
set to find the coefficients of the linear function that
estimates robot co-ordinates. This method performs a
mapping from the mD-space of the input patterns to
the 2D-space of the output co-ordinates. The number
of input variables m depends on the number of patterns
in the training set that must be greater than m.

Two functions fy. fy : R™ — R are seek, sepa-
rately one for each of the two co-ordinates x and y so
that

fe(vp) = xi, f_\‘(_”:');,"'i.

where v; € R™ is the image vector and (x;, y;) the
estimate point. The 2m coefficients of the two linear
regressions

m m

X = Zﬂj vij, Vi = Zbﬁ-’ij
=i

J=1

are determined using the least squares method as fol-
lows:

arom = XX)"'Xx,  br.m= X)Xy,

where x and y are the training set image co-ordinates
and the matrix X{mxm] contains all the v; patterns of
the same training set.

The second statistical method, PCR, uses the prin-
cipal component analysis (PCA) technique to reduce
the dimensions of the input space on which MLR is
then computed [7].

For the PCR the new components have been com-
puted and the number of principal components to use
have been chosen according to the criteria described
in Section 9. The MLR has been later applied on the
values of the chosen principal components.

6.7. Memory requirements

Each image, pre-processed as it was said in Sec-
tion 4, requires 1080 bytes, since it consists of 360
24-bits samples. The amount of memory required to
store all the image vectors to learn an area depends
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on the chosen learning density (see Section 7). For
a typical navigation task, 20-50 kbytes can be a rea-
sonable estimate. In the tests discussed in Section 7,
the neural networks described above have been real-
ized with Stuttgart Neural Network Simulator ( SNNS),
but can be implemented with a standard programming
language. A program that realizes the neural network
needs a floating point variable for each node and for
each link. The number of bits for each variable affects
the precision of the system. STD3BP has 1138 nodes
and 2920 links; using a long double (12 bytes using gcc
on Pentium under Linux), the total amount of memory
is less than 50kbytes. BIONET has the same struc-
ture with an added level that performs the opponent
color computation, and with a larger second hidden
layer. Its nodes are 1262 and its links are 11736. The
memory required in this case is less than 160 kbytes.

7. Test of the system

The system has been tested with the acquisition de-
vice mounted on the robot, as visible in Fig. 7, and
the computations have been performed off-line and on
board as well.

Some indoor environments have been chosen and
images all over the test areas have been collected reg-
ularly over a grid scheme and in some random points.

A subset of the collected images has been used as a
training set for the learning systems, while the others
have been used to test the system performances. Polli-
cino was also tested at random points. In order to fully
understand the meaning of the tests, it should be kept
in mind that Pollicino is not a complete navigation
system by itself, but only a self-localization module
that should be integrated with other sensors to provide
actual navigation and obstacle avoidance capabilities.

In order to test the system performance, the data cor-
responding to the pre-processing of each image have
been fed to the learning system and the difference be-
tween the system output and the expected output has
been collected.

All the neural networks and statistical methods
chosen have been tested on different sets, in different
conditions. The system performances in several tested
indoor environment have always shown comparable
results, Thus, only two representative test areas (Al
and A2) have been reported.

N——
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Fig. 7. The mounted acquisition device.
7.1. Al test area can be seen in Fig. 8. 27 images were taken over a
sampling regular grid. From these 27 images three
The Al test area is a an indoor environment (the learning sets with different sampling densities have
robotics lab) with no conditioning. The objects have been chosen. The high density set is composed of 15
their normal color and position and their disposition images, the mid density of 12 images and the low

Fig. 8. Al test area.
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Fig. 9. A2 test area.

density of nine images. The total area dimension is
5
270 x 90cm-.

7.2. A2 test area

Test area A2 (Fig. 9) is settled in a briefing room
with tables and chairs. It is smaller than Al and a
more accurate sampling has been done. 96 images
were taken in a rectangular test area along a regular
grid and at some random points. In the same way as
Al three density sets have been chosen, with 48, 16
and 9 images. The total area size is 110 x 70 cm?.

Table 1
Al test results®

8. Neural networks results

In this section the localization results of the system,
tested using neural networks in the learning subsys-
tem, are presented,

8.1. Al results

As can be seen in Fig. 8, the first tested area Al
is an indoor environment in which a robot can easily
navigate. In Table 1 the results obtained from STDBP
using the single chromatic channels or the BK/W input,
from STD3BP and from BIONET are shown. All these

Color components High density Mid density Low density Learning system
Err. Dev. Err. Dev. Err. Dev.

R 13.28 4.95 14.63 4.95 15:53 9.23 STDBP

G 15.30 5.63 16.65 6.98 16.20 6.98 STDBP

B 22,95 10.13 20.93 10.35 28.80 11.70 STDBP

Bk/W 18.00 8.10 17.33 7.43 17.10 8.78 STDBP

RGB 11.25 5.18 15.98 495 13.05 743 STD3BP

HSL 22.50 945 27.68 14.85 23.85 12.15 STD3BP

RGB 8.10 3.60 15.08 7.60 18.00 7.65 BIONET

“Localization errors in centimeter.

s




. Al result comparison (cm).

data have been summarized in the chart of Fig. 10. An
example of spatial error distribution in Al is shown
in Fig. 11. The plotted short lines connect the actual
positions to their estimate, indicating the localization
error. The mean error of almost all the tests seems not
to be heavily affected by the density of the learning
set. The transformation of the color information in
the HSL space highly increases the mean error. This
is due to the intrinsic high variance characteristics of
the hue channel values. Given these results, HSL has
not been used in further tests. The best results are
achieved by BIONET.

A. Rizzi. R Cassinis/Robotics and Autonomous Systems 34 (2001) 23-38

8.2. ‘A2 results

The tested area A2 is visible in Fig. 9. It is a typ-
ical office-like environment with desks, chairs and
shelves, lighted with neon tubes. The results are com-
parable with the previous tested area, with a lower
mean localization error. In Table 2 the results obtained
from STDBP with the single chromatic channels, from
STD3BP and from BIONET are shown. A comparison
of these data is shown in Fig. 12. Also, in the test area
A2 BIONET achieve the best results. An example of
spatial error distribution in A2 can be seen in Fig. 13.

Moreover, some visual data collected in random
points have been tested in order to verify how much
the system is able to estimate the robot co-ordinates
out of the regular grid of the learning set. The results,
shown in Table 3 and in Fig. 14, indicate almost the
same performances in and out of the sampling grid.

9. Statistical learning systems results

9.1. Test procedure

The neural network results presented in Section 8
have been compared with the results of the statisti-
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Fig. 11. Errors example in Al with high density.
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Table 2
A2 test results?

Color components High density Mid density Low density Learning system
Em. Dev. Err. Dev. Em. Dev.

R 5.42 3.70 7.55 512 9.59 5.66 STDBP

G 384 2.46 8.06 447 10.65 5.06 STDBP

B 7.53 419 10.04 6.14 13.34 8.65 STDBP

RGB 4.00 2.64 7.77 445 13.61 9.98 STD3BP

RGB 2.70 1.55 4.96 2.96 7.59 4.08 BIORETE

*Localization errors in centimeter.

‘B high
B mid
Olow

Fig. 12. A2 result comparison (cm).

cal methods described. The pre-processed images are
divided into a number of sectors lower than the neural
network tests, as they are the independent variables
of a model that have to be calibrated by a small

number of images. The number of sectors is fixed
in about half the number of calibration images. The
dependent variables are still the robot co-ordinates.
Only the tests performed in the area A2 are
presented.

9.2. MLR data sets choice

The mean localization error vs sector number in
high density is shown in Fig. 15. The fitting curve
of these data is very smooth and for a wide range
of sector number the mean localization error remains
almost steady. This fact supports the selecting criteria
of the number of sectors chosen above. The resulting
number of components, according to this criteria, is
shown in the following tables.

80 T
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Fig. 13. Errors example in A2 with high density.
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Table 3 30

A2 test results at random points* 25 . 8

Color High density Mid density Low density 20 1 \\ = paa

components 15 \ -
Emr.  Dev. Emr.  Devw. Err. Deyv. 10

STD3BP 436 029 8.58 3581 13.87 6.38 5 \k

BIONET 265 132 416 242 6.85 1.6l 0 S S e LN B S A N

- - - ™~ o ™ « m -

*Localization errors in centimeter.

9.3. MLR results

Two kinds of tests have been performed with MLR:
separately on single chromatic channels and with R,
G and B together. In Table 4, the results obtained with
different densities are shown (validation image set).
An example of spatial error distributions using MLR
can be seen in Fig. 16.

The use of all the chromatic channels decreases the
estimate error compared to the use of single chromatic
data. On average, with respect to STD3BP, MLR on
A2 gives a slightly better localization estimate, still

Fig. 15. MLR: mean error (cm) vs number of sectors in high
density with RGB data.

9.4. PCR data sets choice

In the PCR, the number of principal components
to use for the linear regression is a basic choice. The
adopted criteria for the choice of such a subset is based
on"the size of the variance of the principal compo-
nents. The components able to explain [* = 0.1 of
the variance are selected [10]. The resulting number
of components is shown in the following tables.

As in the linear regression, an analysis of the mean
localization error vs the principal component num-
ber has been developed on the validation image set.

comparable with BIONET. As can be seen in Fig. 17, the mean error remains
80 ) T , 1 T !
ooy SN SO N AU S o B T
P U . SCT T4 . S
o b N T .
-10 | | ] i : _l
-20 0 20 40 60 80 100 120

Fig. 14. Errors example at random points, in A2 with high density.




A. Rizzi, R. Cassinis/Robotics and Autonomous Systems 34 (2001) 23-38 35

Table 4 25
A2 test results with MLR? 20
Color com- High density ~ Mid density Low density
ponents 15 1 - |

Emr. Dev. Sect. Err. Dev. Sect. Err. Dev. Sect. 10 4+ —
R 3.82 2.19 24 789458 9 1020 877 9 5 \ .
G 313 2,14 36 470 3.15 12 6.68 4.68 § — Y
B 556 414 12 769488 6 9123529 6 A AN A SRR AR AR A LA AR SRR
R+G+B 258 162 20 432283 9 681 456 7 14 7 1013 16 19 22 25 28 31 34 37 40 43 46 o

*Localization errors in centimeter. Fig. 17. PCR: mean error (cm) vs number of sectors in high
density with RGB data.

& . i
steady in a wide range around the value selected us- i §
ing the suggested criteria. In the same way the images 9.5. PCR results |'
used to train the neural networks and to calibrate the |
MLR are now used to calibrate the models obtained Also in this case, two kinds of tests have been .
using PCR and likewise, the validation image set is performed with PCR: separately on single chromatic
selected. channels and with R, G and B together. In Table 3,

80 . T P e T I I ~

Fig. 16. Errors example in A2 with high density using MLR (cm).
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Table 5
A2 test results with PCR®

Color High density  Mid density Low density
components

Em. Dev, Sect. Err. Dev. Sect. Emr.  Dev. Sect.

R 3353 201 24 566 340 8 8.05 480 7
G 2.89 290 22 4352384 7 822 532 4
B 446 2.56 23 7.67 5.00 7 11.03 641 8
R+G+B 242 167 29 366 237 7 6.11 375 5

“Localization errors in centimeter.

the results obtained with different chromatic input and
density are shown. An example of spatial error distri-
butions of the PCR can be seen in Fig. 18. In average
PCR shows performances comparable with the other
methods, but less dependent from the learning density.

Also using PCR, some visual data collected in ran-
dom points have been tested in order to verify the
system estimate out of the regular grid of the learn-
ing set. The results, shown in Table 6, indicate almost
the same performances in and out of the sampling
grid.

Table 6

AZ test results at random points using PCR®

Color High density Mid density Low density
components

Em  Dev. Em.  Dev. Err. Dev.

PCR 493 3.12 511 115 13.52 638

*Localization errors in centimeter,

10. System robustness against rotations

Pollicino does not measure the robot rotation in
the fixed reference system defined in the learning
phase. While a programmed turn of the robot can
be easily compensated with a pattern shift, an un-
wanted heading change due to skidding or other
external unpredictable reasons can result in an ex-
tra localization error. Tests were made to investigate
the sensitivity of the system to undetected rotations.
As it can be seen in Tables 7 and 8, small rota-
tions are well tolerated. As the unwanted rotations
gets higher (more than 5°), the system performance
sensibly decreases, but such high rotations could be

-10]

saé \94} ¢ 0

»
d
®

40 o

301 B o o -

&
: 3

1019

?u{z-/t &-. f#} *_,9

cm

Fig. 18. Errors example in A2 with high density using PCR (cm).
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Table 7
Clockwise rotation test results®
Clockwise High density ~ Mid density Low density

rotations (deg.)

Emr.  Dev. Er.  Dev. Em  Dev.

2 456 1.76 846 406 1243 1.86
5 6.73 0.50 1084 376 17.08 831
10 14.28 4.51 2021 117 2489 5.13
15 1524 330 2390 747 3067 131
20 1702 510 2937 1.00 2744 104
45 4032 448 3045 4.17 3523 1.99

*Localization errors in centimeter.

Table 8

Counterclockwise rotation test results®

Counter- High density ~ Mid density Low density

clockwise

rotations (deg.) Emr. Dev. Em.  Dev. Em Dev.
2 430 1.78 9.11 427 992 229
5 6.26 0.65 1192 394 1550 1271
10 13.05 426 22,03 109 2487 7.19
15 1392 317 26,09 8.02 31.80 146

20 1552 479 32.11 090 2793 106

45 3649 4.23 3329 439 3728 248

“Localization errors in centimeter.

managed if the robot keeps track of its heading in the
reference system by other means (e.g. magnetic or
gyrocompass).

11. Conclusions and perspectives

A self-localization system for autonomous robot has
been presented. The main features of this system are:
it is a completely passive system. it does not require
any environment conditioning and it works even if the
learned environment changes moderately (e.g. people
walking, moved objects, etc.). The precision of the
localization estimate is acceptable and, especially with
high density learning sets, the localization error is low,
compared to the needs of a navigating mobile robot,

Pollicino has been implemented with low Cost com-
ponents and it does not require powerful computa-
tional resources. In fact the presented system has been
implemented on low cost PC (e.g. 436) with response
time almost instantaneous in relation with the sam-
pling time of the low cost camera (about eight frames
per second).

Regarding the learning subsystem choice, a com-
parative analysis of the results indicates that all the
tested methods have comparable performances. More-
over, the randomness of the error direction suggest that
an iterative estimate could further increase the overall
system performance.

The use of the system in environments with heavy
lighting changes, that might affect the system per-
formance, should be investigated, and automatic
learning procedure should be developed in order to
realize an autonomous guidance system able to drive
the robot back from unknown places visited only
once.

References

[1] E. Bideaux, P. Baptiste, C. Day, D. Harwood, Mapping with
a backpropagation neural network. in: Proceedings of the
IMACS-IEEE/SMC Symposium, Lille, France, 1994.

[2] R. Cassinis, D. Grana, A. Rizzi, A perception system for
mobile robot localization, in: Proceedings of the WAAP 935
Workshop congiunto su Apprendimento  Automatico e
Percezione, Ancona, Italy, 1995.

[3] R. Cassinis, D. Grana, A. Rizzi, Self localization using
an omnidirectional image sensor, in: Proceedings of the
SIRS’'96, Fourth Intemnational Symposium on Tntelligent
Robotic Systems, Lisbon, Portugal, 1996,

[4] R. Cassinis, D. Grana, A. Rizzi, Using colour information
in an omnidirectional perception system for autonomous
robot localization, in: Proceedings of the EUROBOT'96,
First Euromicro Workshop on Advanced Mobile Robaots,
Kaiserslautern, Germany, 1996.

[5] R. Cassinis, D. Grana, A. Rizzi, V. Rosati, Robustness
characteristics of Pollicino system for autonomous robot
self-localization, in: Proceedings of the EUROBOT 97,
Second Euromicro International Workshop on  Advanced
Mobile Robots, Brescia, Italy, 1997,

[6] B. Crespi, C. Furlanello, L. Stringa, Memory based
navigation, in: Proceedings of the [JCAI Workshop on
Robotics and Vision, Chambéry, France, 1993, p. 1654,

[7] W.R. Dillon, M. Goldstein, Multivariate Analysis; Methods
and applications, Wiley, New York, 1984.

[8] D.S. Falk, D.R. Brill, D.G. Stark, Seeing the Light. Harper
and Row, New York, 1986.

[9] M.O. Franz, B. Scholkopf, H.A. Mallot, H.H. Bulthoff,
Learning view graphs for robot navigation, Autonomous
Robots 5 (1) (1998) 111-125.

[10] LT. Jollife, Principal Component Analysis, Springer, New
York, 1986,

[11] S.K. Nayar, K. Ikeuchi. T Kanade, Surface reflection:
physical and geometrical perspectives, [EEE Transactions on
Pattern Analysis and Machine Intelligence 13 (1991).

e

[ R




38 A. Rizzi, R. Cassinis/Robotics and Autonomous Systems 34 (2001) 23-38

[12] T. Ohno. A. Ohya, S. Yuta, Autonomous navigation for mobile
robots referring pre-recorded image sequence, in: Proceedings
of the IEEE/RSJ IROS 96, 1996,

[13] BG. Hoel, Introduction to Mathematical Statistics, Wiley,
New York, 1947.

[14] D.E. Rumelhart, J.L. McClelland, Parallel Distributed
Processing: Explorations in the Microstructure of Cognition,
MIT Press, Cambridge, MA, 1986.

[15] S. Shah, J.K. Aggarwal, Mobile robot navigation and scene
modeling using stereo fish-eye lens system, Machine Vision
Applications 10 (4) (1997) 159-173.

[16] G. Wyszecki, W.S. Stiles, Color Science, Wiley, New York,
1982,

[17] Y. Yagi, S. Fujimura, M. Yashida, Route representation
for mobile robot navigation by omnidirectional route
panorama Fourier transformation, in: Proceedings of the
IEEE International Conference on Robotics and Automation,
Leuven, Belgium, 1998,

(18] Y. Yagi, Y. Nishizawa, M. Yashida, Map based navigation of
the mobile robot using omnidirectional image sensor copis,
in: Proceedings of the IEEE International Conference on
Robotics and Automation, Nice, France, 1952.

[19] Y. Yagi, Y. Nishizawa, M. Yashida, Map based navigation
for a mobile robot with omnidirectional image sensor copis,
IEEE Transactions on Robotics and Automation 11 (5) (1995)
634648,

[20] Y. Yagi, H. Okumura, M. Yashida, Multiple visual sensing
system for mobile robot, in: Proceedings of the IEEE
International Conference on Robotics and Automation, San
Diego, CA, Vol. 2, 1994, pp. 1679~ 1684.

[21] Y. Yagi, M. Yachida, Real-time generation of environmental
map and obstacle avoidance using omnidirectional image
sensor with conmic mirror, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
1991,

[22] K. Yamazawa, Y. Yagi, M. Yachida, Omnidirectional
imaging with hyperboloidal projection, in: Proceedings of the
[EEE/RS] TROS'93, Vol. 2, 1993, pp. 1029-1034.

Alessandro Rizzi graduated in Informa-
tion Science from the University of Milan
in 1992 and got his Ph.D. in [nformation
Engineering from the University of Bres-
cia (Italy). From 1992 to 1994 he worked
as a contract researcher at the University
of Milan in the Image Laboratory, smudying
the problem of color constancy and its ap-
plication in computer graphics. From 1994
to 1996 he worked as a contract professor
of Information Systems at the University of Brescia. Since 1994
he has been working with Professor Riccardo Cassinis at the Ad-
vanced Robotics Laboratory studying problems of self-localization
and navigation using color information, omnidirectional devices
and biologically inspired models. In 1999 he worked as a con-
tract professor of Computer Graphics at Politecnico of Milano.
He is presently researching on color appearance models applied
to robotic visual navigation and image correction.

Riccardo Cassinis received his degree in
Electronic Engineering in 1977 from the
Polytechnic University of Milan. In 1987
he was appointed as an Associate Profes-
sor of Robotics and of Numerical Systems
Design at the University of Udine. Since
1991 he is working as an Associate Profes-
sor of Computer Science and of Robotics
Y7/ at the University of Brescia. He has been
s ‘2 working as a Director of the Robotics Lab-
oratory of the Department of Electronics in Milan, of the Robotics
Laboratory of the University of Udine, and is now the Director
of the Advanced Robotics Laboratory of the University of Bres-
cia. Since 1975 he has been working on several topics related to
industrial robots, and since 1985 he is involved in navigation and
sensing problems for advanced mobile robots. His current interests
include mobile robots for exploring unknown environment, with
particular attention to problems related to humanitarian de-mining.




'y

‘o b

2 e e e e T TN

B e

o . L L

i e R

Robotics and Autonomous Systems

Vol. 34, No. 1, 31 January 2001

Abstracted /indexed in: Cambridge Scientific Abstracts, CompuMath Citation Index, Compuscience,
Computer Abstracts, EIC Intelligence, Engineering Index/Compendex, INSPEC Information Services,

ISI Alerting Services, Science Citation Index — Expanded

Contents

Th. Fraichard and Ph. Garnier
Fuzzy control to drive car-like vehicles

A. Rizzi and R. Cassinis

A robot self-localization system based on omnidirectional color images

T.K. Podder and N. Sarkar

Fault-tolerant control of an autonomous underwater vehicle under thruster redundancy

M. Maris

Attention-based navigation in mobile robots using a reconfigurable sensor

Calendar

23

39

53

65

CO NTE NTS This journal is part of ContentsDirect, the free alerting service which sends tables of contents by

e-mail for Elsevier Science books and journals. You can register for ContentsDirect online at:

. www.elsevier.nl/locate/contentsdirect

TR

0921-8890(20010131)34:1;1-5




