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Abstract

This paper presents a homing algorithm for an autonomous robot that uses only visual information. An image
grabbed at the target position is compared with the perceived one to determine the position of the robot and its target.
Visual landmarks are extracted autonomously from the images and a correlation criterion, based on a novel visual
landmark descriptor equalization, is presented. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The term homing indicates the navigation pro-
cess by means of which an autonomous robot
drives itself towards a precise location. The ap-
proach proposed in this paper derives from a bi-
ological homing model developed by Cartwright
and Collett (1983, 1987). Without requiring any
preconditioning of the environment, it estimates
the robot and the target relative positions by
comparing an image grabbed at the target position
with the currently perceived one. The navigation is
performed using exclusively the visual information
grabbed at the two positions. Analyzing only the
chromatic and geometric characteristics of the
segmented images, stable chromatic areas, used as
visual landmarks, are chosen autonomously.
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The main difference between the Cartwright and
Collett model and the implemented navigation
system is that the camera used in this work cannot
take omnidirectional images. To overcome this
limitation, the robot learns and then approaches
the homing point keeping its heading constant.
This is not a critical limitation since different im-
ages of the same goal position, grabbed with dif-
ferent heading, can be taken into account by a
higher level control module able to switch among
them.

Using this approach, visual changes on the
image plane can be described with a simplified
affine model. This model is applied only on par-
ticular regions, automatically extracted from the
images, called Visual References (VRs). By com-
puting the translation and scale parameters of each
VR in the different scenes it is possible to estimate
the robot displacement in the environment.

The proposed method can be applied only for a
final homing phase, where the system can find
corresponding VRs in the two images. A higher
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level navigation module is supposed to drive the
robot until a valid VR can be found.

The most common approach used to compare
the different VRs 1s the one based on the inter-
correlation technique (Vanderburg and Rosenfeld,
1977: Pratt, 1978; Segman, 1992). Unfortunately,
this approach produces a very wide maximum of
the intercorrelation function. It is therefore diffi-
cult to estimate the maximum in presence of noise.
Moreover, this technique is not invariant with re-
spect to neither the scaling nor the landmark ro-
tation and computing the intercorrelation function
of every possible transformation is too expensive
(Pratt, 1978; Goshtasby, 1985; Segman, 1992).
Another algorithm that uses the phase of the im-
age Fourier transform to implement more selective
and robust filters is suggested in (Chen et al.,
1994). An earlier work developed by our research
group (Bianco et al., 1997; Rizzi et al, 1998)
compared different VRs using three color param-
eters and four geometrical parameters, for each
VR (Hu, 1962; Reiss, 1991).

In the research presented here, a comparison
method based on the use of Fourier—Mellin
transform (Oberhettinger, 1974), invariant with
respect to translations and scale changes (Ravi-
chandran and Trivedi, 1995), is proposed to carry
out the VRs coupling. A VR descriptor containing
its Fourier—Mellin transform, is computed for each
VR. This step is performed using a gray-scale VR
representation. A distance index based on the in-
tercorrelation function is used to estimate the VRs
descriptors coupling between different images. A
new VR descriptor equalization has been devised
to increase the intercorrelation selectivity. In a
second phase, the relative scale and rotation factor
obtained from the intercorrelation between two
VR descriptors, is used to reinforce the displace-
ment estimation, increasing the system robustness.

2. Computing the VR descriptors

Given a generic VR r(x,y), the Fourier spec-
trum of its rotated, shifted, scaled version s(x, y) is

IS(u,v)| =072 - |J’?[r:r_L (u-coso+v-sina),

o' (—u-sina+uv-cosa)], (1)

where « is the rotation angle, o the scaling factor,
(x9, ) the translation and R(u,v) the r(x,y) Fou-
rier transform. As it can be noticed from Eq. (1),
|S(u,v)| 1s shifting invariant. Moreover, r(x,y) ro-
tation and scale can be separated defining R, and
Sp. the r(x, y) and s(x. y) Fourier spectrum in polar
coordinates (0, p):

Sy(0,p) =0 -R,(0—a,p/a).

In this way rotating s(x, y) is equivalent to shifting
Sp(6. p) along 0. Using a radial logarithmic scale
s(x,y) scaling can be mapped in the Sy, shifting as
follows:

Spl(ﬂ- l;’] =0 52 RPI(U - !J’/ == K):

where ) = log(p) and x =log(s). Thus, s(x.y)
rotation and scaling correspond to Sy(#, @) shift-
ing. Summarizing, a transform along p and then
a logarithmic remapping are equivalent to the
Mellin transform along the same direction.

To obtain a VR descriptor two steps are per-
formed: the computation of the VR DFT module
and its transformation into polar—logarithmic co-
ordinates. Since the DFT module is even, only the
first half is taken into account. An example of VR
is shown in Fig. 1(a) and the relative DFT module
in polar-logarithmic coordinates is shown in
Fig. 1(b).

In order to increase the intercorrelation per-
formance a new amplitude equalization function,
with a simple non-linear filter. is proposed. Fig.
1(c) shows the proposed equalization function and
Fig. 1(d) shows the results of its application on
Fig. 1(b).

3. VR descriptors coupling

To achieve the coupling between two descrip-
tors from different images a coupling reliability
index is used:

W, - W, — max[o,,(6, V)]

CR,, = o . (2)

where ¢, (0,1) is the intercorrelation function
between the descriptors r and s, having energy W,
and W, respectively.
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Fig. 1.(a) A VR example, (b) the VR’s DFT in polar—logarithmic coordinates, (c) the proposed equalization function, and (d) the final

VR's equalized descriptor.

Let #" RS gom and ¥ RS 4 be the VR sets of the
goal and actual images. with m and n elements,
respectively. A correlation matrix C,,., is used to
contain the coupling reliability wvalues of the
VRS o and VRS, elements. From C, two
boolean matrices are computed, the first B,oaiac
links each VR in 7 %%, with the VRs in
V" RS .. Each link refers to the couple that for
each element in ¥ %Y, maximizes CR with
¥ RS 4. Only the values under a given threshold
are considered. The second matrix Byggow IS
computed conversely.

The final VR couples between the images are
obtained looking for the index where both By e
and B, g0, have a link. If this does not happen a
VR in ¥ %#.F g is not coupled and will not affect
the localization process.

Once the VR coupling is made it is possible to
obtain the related rotation and scale factors. The
maximum of the intercorrelation function of the
VR descriptor along the radial axis gives the scale
factor, while the VR rotation factor can be found
from the position of the intercorrelation maxi-
mum along the phase axis. The resulting expres-
sions are

Syr = exp (— J%) Ryg = I“:" - 180°,

where Syr is the scale parameter, Rygr the VR ro-
tation parameter in degrees, Xy and yy,; the po-
sition of the intercorrelation function maximum,
and n is the image dimension in pixels.

With these additional parameters a new VR
coupling validation phase can be added. The
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robotic navigation process derives that VRs usu-
ally do not perform considerable rotations, there-
fore VR couples having a rotation over a threshold
angle are discarded. This additional validation
phase reduces the number of false couplings.

4. The Homing algorithm

In order to extract the VRs from the image, a
segmentation is performed with a region growing
technique. Not all the VRs in the image are useful
for the localization task, only a selected subset of
them is used. The criteria of such selection are
based on area, perimeter regularity and chromatic
saturation.

For each VR couple, the relative position in-
formation, weighed with its coupling reliability, is
used to estimate the robot position. This estimate
is based on the simplified affine model. In fact the
robot fixed camera heading and constant robot
height allow the following simplified relations be-
tween camera translation and affine parameters
(Rizzi et al., 1998):

{IX:_%'ﬂ_‘Q ZK'ﬂm

(3)

" fz:Z'ﬂI]:H'ﬂxl,

where ¢y and ¢, are the robot displacement com-
ponents, Z is the VR distance and a,, a,; are the
translation and dilation/compression factors of the
simplified affine model.

In the test presented in this paper H and K have
been set with a tuning phase. However their fine
tuning is not critical since they give only a dis-
placement estimate proportionality factor. In fact,
the biologically inspired approach of the proposed
method uses iteratively a qualitative vector esti-
mate instead of a precise camera calibration
(Bianco et al.. 1999).

To estimate the robot position a displacement
vector 7; for each VRs couple is computed using
the two parameters aq and a,;, estimated from the
affine model.

The scale parameter obtained from the VR de-
scriptors intercorrelation function (3) can be used
to reinforce the a,, estimate:

a,1(VR) =1 — Syg.

Then a,(VR) is computed with the simplified
affine model:

ﬂm(VR) = leva — Ay (VR) 'IguanVR)]
- [1 —aq(VR)]

where x,..(VR) is the x component of the VR
center of mass in the goal image and Axyg is the
VR center of mass x component translation.
Finally the partial vector t; is given by (3).

Then, the overall localization vector is com-
puted summing all the partial vectors, weighed
with their normalized coupling reliability value
CR;:

7 i exp(—CR;) .
=0 Ein exp(—CR;) 5

where N is the number of VR couples used.

If no valid VRs are present in the actual image
or no valid VRs coupling are found, a displace-
ment vector cannot be estimated. This situation
should be managed by a higher level control
module.

5. Tests

Different tests have been carried on in order to
verify the system performance.

Some images, grabbed during an indoor navi-
gation, have been segmented using a classic re-
gion-growing technique. Examples are shown in
Fig. 2 and 3. The VR couplings of the two ex-
amples of Fig. 2 using the Fourier-Mellin corre-
lation method are shown by the arrows in Fig. 3.
In Table 1 the coupling reliability (CR) values of
the examples shown in Fig. 3 are presented. The
first row represents the valid VRs extracted from
the actual image and the first column represents
the valid VRs extracted from the goal image. The
selected results of the coupling method described
in Section 3 are written in bold. As it can be
noticed, all the matchable VRs have been tested
and all the possible correct coupling have been
found.

In order to verify the reliability of the rotation
and scale factors derived from the Fourier—Mellin
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Fig. 2. Example images taken from mdoor navigation.

transform, used to reinforce the displacement
vector estimate, the following test has been done.
The synthetic vectorial images, shown in Fig. 4
have been scaled from a 0.5x to a 1.5x factor with
a 0.1x step and rotated from —180° to +180° with
a 5° step. Synthetic images have been used in order
to avoid aliasing problems in the generation of the
scaled and rotated test images. Statistics of the
Fourier—Mellin estimate error of these artificial
rotation and scaling are reported in Table 2. As it
can be noticed, the errors are negligible and thus
these values can be used to correct the displace-
ment of the affine model.

The homing algorithm has been tested com-
puting the first step estimates in different positions
inside a wide area around the goal position

(Figs. 5(a) and (b)) and performing complete
navigations (Fig. 5(c)). For a better visualization,
vectors are shown with halved modules. In Fig.
5(b) the rotation and scale parameters obtained
from Fourier—Mellin are used to correct the dis-
placement estimate. They reduce the number of
false couplings and give a more precise first
movement estimate.

Finally, Fig. 5(c) shows complete navigation
examples using the two above described methods.
They easily reach the goal position and have
comparable performance. In fact, the precision in
reaching the goal position can be set as a naviga-
tion parameter and the number of steps required is
function of the conservativeness of the H and K
setting.
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(b)
Fig. 3. VR coupling obtained from images in Fig. 2.
Table 1
Coupling values obtained from the VRs coupling examples in Fig. 3
CR a b
2 5 6 8 11 2 4 7 8 9
2 0.632 5.379 5.971 3.679 1.111 0.683 6.380 4.502 1.748 1.883
6 3.032 6.501 1.522 5.020 3.684 2.845 3.343 5.392 6.031 4.743
8 4.840 0.479 7.109 5.699 4.081 4.817 7.858 0.336 5.447 4.139
10 1.907 4.468 9.187 2913 1.398 2,152 8.561 4.995 0.282 1.890

6. Conclusions

In this paper a homing algorithm for auto-
nomous robots that uses only visual information is
presented. The proposed homing method uses VRs
autonomously extracted from the environment
images and computes a descriptor for each VR

using the Fourier-Mellin transform. The choice of
this operator derives from its invariance to both
scale and orientation.

A new method is proposed to equalize the VR
descriptors and, a distance measurement is used
to couple descriptors across images taken from
different positions. From the comparison of
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(a) (b)

(d)
Fig. 4. Test images for scale and rotation estimate.
Table 2
Estimated scale and rotation parameters
Image Max u o (-107%)
Secale
A 0.132 0.0063 1.331
B 0.098 0.0071 0.843
C 0.132 0.0018 1.204
D 0.016 0.0000 0.098
Rotation
A 1.312 0.0067 225.6
B 0.875 0.0000 119.7
C 0.938 0.0000 151.2
D 0.562 0.0000 60.9
the coupled VRs an estimate of the robot dis- The use of VR Mellin equalized descriptors
placement is made. Using this information the performs almost in every situation correct cou-

robot can navigate toward the goal position. plings.
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Fig. 5. Movement estimate using (a) Fourier—Mellin, (b) Fou-
rier—Mellin with scale parameter and (c) navigation example
using the two methods.

An improvement of the displacement estimate
robustness is obtained using the relative scale and
rotation factors extracted from the Mellin Trans-
form.

Results prove the effectiveness of the method
for indoor robot navigations.
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