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This paper presents a path-following system
implemented with two different types of neural net-
works, that enables an autonomous mobile robot to
return along a previously learned path in a dynamic
environment. The path-following is based on data
provided by an omnidirectional conical visual sys-
tem, derived from the COPIS sensor, but with differ-
ent optical reflective properties. The system uses
optical and software processing and a neural net-
work to learn the path, described as a sequence of
selected points. In the navigation phase it drives the
robot along this learned path. Interesting results
have been achieved using low cost equipment. Test
and results are presented.
Keywords: Neural  networks;  Omnidirectional
vision; Robotic navigation

1. Introduction

To perform an exploration in an unknown environ-
ment, it is safer for a robot to be able to return along
the same exploratory path from which it originally
travelled. In the meantime, the robot can collect
useful information to support the exploration task.
Different sensors, such as lasers, optical range find-
ers, sonar or proximity sensors, can be used to scan
the environment and obtain useful data in order to
allow the robot to self-localise its position. Scanning
a wide area around the robot with a vision system
can be done mainly using two different approaches,
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a pan-tilt camera or an omnidirectional reflecting
surface, whose shape and reflectance properties can
differ widely [1-6], in this way affecting the visual
information acquired. In fact, the surface of the
omnidirectional device can either be a perfect mirror
that reproduces the visual information around it, or
a glazed surface, acting as a low pass filter on the
image frequency components.

In an omnidirectional image, the advantage of
capturing a wide area in a single snapshot is counter-
balanced by the geometrical distortion of the omnidi-
rectional projection. For this reason, in the proposed
system, the omnidirectional vision is not used to
recognise an object, thus making a perfect reflecting
surface and a shape that corrects the projected geo-
metrical distortions unnecessary and superfluous for
the simplicity of the system,

Following this assumption, a different omnidirec-
tional vision device called an Omnidirectional
Pseudo Mirror (OPM) has been devised. The infor-
mation coming from this sensor is stored in a learn-
ing system so that, once the path is learned, the
robot can return along the very same path on which
it originally travelled.

Section 2 presents an overview of the whole
system. Section 3 describes the OPM in detail,
Section 4 describes the preprocessing of the omnidi-
rectional images, and Sections 5 and 6 explain the
use of the learning system and its characteristics.
Sections 7 and 8 report indoor tests results.

The proposed system derives from Pollicino, a
previous self-localisation system [7,8] with a similar
structure but with a different approach. Pollicine
was designed to learn an area and localise itself
inside. Its purpose was not to navigate, but only to
self-localise in the whole learned area, while the
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proposed system is designed to learn a single path
(not an area) in a more compact way and drive the
robot back along the same path. Both systems use
the same OPM, but the learning systems and the
use of images is different.

2. System Description

There are four subsystems within the system struc-
ture (see Fig. 1):

e the omnidirectional vision subsystem, composed
of an omnidirectional image sensor (OPM) and a
camera, which collects images 360° around the
robot (Fig. 1, top left);

e the image preprocessing subsystemn which simpli-
fies the omnidirectional visual information images
from the surrounding environment (Fig. 1, bot-
tom left);

e a neural network which classifies the extracted
data (Fig. 1, top right);

e an orientation correction subsystem which corrects
the robot’s orientation along the path (Fig. 1,
bottom right).

The omnidirectional vision subsystem uses a colour
CCD camera in axis with the OPM, which makes
a first optical preprocessing with its glazed surface.
From the grabbed image, a 360° array of RGB
colour values is extracted, one for each degree of
the omnidirectional vision field, to form a Horizon
Vector (HV), which is used to train the neural
network and estimate the robot's position along
the path.

The Artificial Neural Network (ANN), fed with
HVs, is capable of recognising one visual vector
from another, even if noise is superimposed or if
the HV is partially modified by obstacles or other
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Fig. 1. The system structure.
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moving objects. This property is very important if
the system has to act in a dynamic environment.

Taking advantage of the ANN coding capability,
the orientation control system compares the input
HV with the one it learned, identifying precisely
the image pattern shift.

Once the path is learned as a sequence of HVs,
the robot can retrace its path simply, moving itself
point-by-point following the sequence of the pre-
viously visited points and preserving the correct
orientation.

This system is economical, using a low cost
conical mirror with a non-perfect surface, and a
system that does not require a high quality camera
because of the OPM optical pre-processing mech-
anism. The algorithms are also very simple, and
neural network training happens only once at the
end of the navigational learning phase.

3. OPM, the Image Sensor

The Omnidirectional Pseudo Mirror is the same
device as that used in the Pollicino system [8]. It
is neither a perfect conical mirror nor it is designed
to obtain a high definition image of the environment.
The large amount of image detail with a perfectly
reflecting mirror would increase the image’s elabor-
ation complexity. As the OPM surface increases its
blur effect (see Fig. 2), the high frequency content
in the image decreases [9]. The chosen OPM is the
bottom right one of Fig. 2. The blurring effect and
the mirror shape make the vertical dimension col-
lapse along each ray of the image [10].

A reference system transformation from polar to
rectangular is applied to this image to simplify the
processing. Pixels around the centre of the image
are discarded, avoiding aliasing problems due to the
presence of a great number of sectors in a relatively

Fig. 2. Different conical mirrors surfaces.
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Fig. 3. An RGB Horizon Vector (HV).

small area. Then a selected ring of the circular
image is mapped into a rectangle. Each vertical
stripe of the rectangle contains all the pixels rep-
resenting the chromatic characteristics perceived in
the related direction. Each stripe is then averaged
to obtain a single value for each degree of the view
field (this is an HV). An example of HV displayed
with the three RGB components one after the other
is shown in Fig. 3.

A spectral analysis of the omnidirectional sensor
output has been made to distinguish useful fre-
quencies after pre-processing. Snapshots from differ-
ent indoor environments have been taken, and the
relative HVs have been extracted: the averaged per-
iodogram of Fig. 4 shows that only normalised
frequencies under 0.2 are significant.

In fact normalised frequencies over 0.05 are more
than 40 dB under the continuous value. In other
words, the cone reflectance acts as a low pass
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Fig. 4. The averaged periodogram of 12HV from different
environments.
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filter, allowing the sector decimation described in
the next section,

4. The HV Preprocessing

Each HV is composed of RGB values. Thus, there
are three resulting vectors, with 360 values each.
For the neural network, an input layer of 1080
values is very large, and requires a long period of
training. According to the spectral response of the
image sensor (Fig. 4), a great reduction of the input
layer can be made, thus we decided to undersample
the HVs by a factor of 10. In fact, an indoor
environment is typically distinguished by fixed
objects, such as furniture, walls and doors, with a
great amount of low frequency components. Thus,
the vectors are low-pass filtered with a moving
average filter, and the resulting vectors have 108
values, 36 for each chromatic component.

In the next step, each channel vector is circularly
correlated with itself, and the continuous component
is subtracted and finally normalised. An example is
visible in Fig. 5, where the circular auto-correlation
of the HV in Fig. 3 is shown. The choice of the
circular correlation follows the geometric character-
istics of the omnidirectional vector. The mean value
is subtracted to keep only the ‘shape’ of the corre-
lation, In this way, small brightness shifts can be
tolerated, and the ANN can recognise a location
even with illumination changes.

5. The Neural Networks

Two different neural networks with two different
path point coding approaches have been developed
to learn the HVs along the path. The first one,
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Fig. 5. The circular autocorrelation of the HV of Fig. 3.
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Fig. 6. The NetA structure.

called NetA, codes the sampled points along the
path with different values on two output units (Fig.
6); the second one, called NetB, codes the path
using one output unit for each sampled point along
the path (Fig. 7). Both are feed-forward totally
connected ANNSs; for both, the activation function
is sigmoidal, and they are trained with a standard
back-propagation algorithm.

NetA (Fig. 6) has 108 input, 5 hidden and 2
output neurons. Using NetA to learn about 40 points
in a path, only the first output neuron is used, while
the other is kept unused. The number of points
coded by a single output unit can be further investi-
gated, but according to some preliminary tests, using
both the output units, more than 1000 positions can
be encoded. That should be enough even for long
path sections in complex environments: with a 20 cm
sampling step, more than 200 meters can be learned.

The structure of NetB (Fig. 7) changes according
to the number of the points to learn. NetB dynami-
cally changes the number of links and connections
according to the characteristics of the environment.
It has 108 input neurons and, with N sampled points
along the path, N/3 hidden and N output neurons.
A typical number of sampled points ranges from
30-70.

Fig. 7. The NetB structure.
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Both the ANNs have been implemented in the
C language to obtain good speed performances.
Computational times are presented in Section 8. The
amount of memory needed to store the data is very
small. Each HV requires 108 bytes, since it consists
of 36 24-bit samples. The amount of memory
required to store all the HVs to learn a path depends
upon the chosen sampling step. For a typical navi-
gation task, 2-5 kbytes can be a reasonable estimate.
The program that realises the neural network needs
a floating point variable for each node and link.
The number of bits for each variable affects the
precision of the system. NetA has 108 inputs neu-
rons, 5 hidden and 2 output; using a long double
(12 byte using gcc on Pentium under Linux), the
total amount of memory is less than 1 Kb. NetB
has a changing number of nodes, but almost the
same structure, thus the memory required is usually
under 1 Kb.

6. The Orientation Correction
Subsystem

The circular convolution of the HVs is used to
estimate the robot’s unwanted orientation changes.
During the navigational training, all the HVs with
their positions along the path are stored in an
ordered list. When the system is used to follow the
learned path, the neural network returns an estimate
of the robot position along the path. This value
usually falls in the middle of two sampled points.
Given two vectors, the maximum correlation point
indicates how much one vector is a shifted copy of
the other. This property is used to estimate the robot
shift. The correlation of the actual HV is compared
both to the preceding and the following one in the
list. A linear interpolation of the shift between the
two circular correlation maximum points is used to
estimate the actual shift with respect to the learned
position. Using this estimate, a robot rotation is per-
formed.

This estimate is robust toward limited changes in
the environment. In fact, the correlation is not affec-
ted by noise that modifies only a part of the image
(i.e. partial occlusions, moving objects, etc.). More-
over, moderate brightness changes are well tolerated
due to the fact that the HV’s shape is more signifi-
cant than its absolute values (see Section 4).

7. Route Definition and Test Setup

The system is designed to learn a route as a
sequence of straight paths, each rotated from
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5°-70° with respect to the previous one. The 5°
lower bound has been chosen to stay up from the
precision limit of the robot on which the system
has been tested (Pioneer I by Activ Media Inc.);
the upper limit is set not to reach the 90° turning
back limit.

A path sampling step can vary from 10-50 cm
from each point. If necessary, this sampling distance
can be further varied if the environment character-
istics originate HVs with a high variance. Different
paths have been chosen inside the lab. Pictures of
the test environments are visible in Fig. 8.

Using NetA, for each learned point along the
path, the HV and its autocorrelation vector is
extracted and labelled with a progressive floating
point number into range [0-1]. Then the neural
network is trained using the autocorrelation vectors
as inputs and the label number as outputs. The
training continues until a mean error of 1/200 is
reached.

Fig. 8. Typical test environments.
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NetB has an output neuron for each sampled point
along the path, so the same input vectors are used
to train the net with an active value only on the
relative output neuron.

The navigation through the learned paths is per-
formed after the training phase. The robot is pos-
itioned at the starting point, then a simple control
system guides the robot towards the ending point
of the path.

While the ANN estimates the actual robot pos-
ition, the orientation control subsystem returns the
azimuth difference. The azimuth needed corrections
are stored into an accumulator that changes the
robot heading only when a 5° value, or greater is
reached. This prevents the system from zigzagging
under the action of very small azimuth difference.

8. Tests and Results

The system has been mounted on a Pioneer I robot
by Activ Media, carrying a Pentium 133 processor
on its back, as shown in Figs 9 and 10.

The tests have been performed on 3-4 m long
paths. This value can be extended to an arbitrary
path length collecting a series of sub-paths with the
relative ANN’s weights (see Section 5).

Tests on different paths and on various orientation
detections have been performed and the results are
reported.

8.1. Straight Line Navigation

In these experiments, the performance of the system
vs. the chosen sampling step has been tested. For
this purpose, different straight line paths have been
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Fig. 9. Scheme of the robot with the omnidirectional vision sys-
tem.
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Fig. 10. The actual robot with the system mounted.

learned with different sampling steps, using both
neural networks.

As shown in Figs 11-14, the sampling step in
the learning phase moderately affects the system
performance following a straight line. The two neu-
ral networks have shown almost the same perform-
ance, as can be noticed in the values of Table 1.
In all the tested cases, the system follows the line
with limited errors (see Figs 11-14), mostly due to
the robot motor driving tolerance.

0 B 0 15 20 25 30 35 40
position [am]

Fig. 11. Linear navigation with 20 cm sampling step using NetA.
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Fig. 12. Linear navigation with 20 cm sampling step using NetB.
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Fig. 13. Linear navigation with 40 cm sampling step using NetA.
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Fig. 14. Linear navigation with 40 cm sampling step using NetB.

8.2. Orientation

The orientation correction capabilities have been
tested on learned points along the path (Table 2),
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Table 1. Straight path results vs. sampling step.

Step Mean Regression Max

error error

NetA 20 cm 0.52 0.995 1.25
40 cm 0.35 0.981 1.25

NetB 20 cm 0.36 0.997 1.00
40 cm 0.29 0.989 1.00

Table 2. Orientation estimate in learned points along the
path.

Real Estimate
orientation orientation
0 0
20 18
45 39
70 66
90 89
130 125
180 170

Table 3. Orientation estimate in non-learned points along
the path.

Real Estimate
orientation orientation
0 0
20 16
45 45
70 66
90 94
130 135
180 170

Table 4. Orientation estimate in points 50 cm distant from
the path.

Real Estimate
orientation orientation
0 5
20 20
45 50
70 70
90 81
130 120
180 165
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Fig. 15. Test navigations along a turning path.

on non-learned points along the path (Table 3), and
on points 50 cm distant from the path (Table 4).
Estimate errors greater than 5° are written in bold.
As can be noticed, in most cases, the orientation
estimate error is below the robot turning limit (5°).

8.3. Navigations

The system has been tested on typical paths in the
indoor environments shown in Fig. 8, in normal and
noisy conditions (people moving around the robot,
secondary light being switched on and off).

In Figs 15 and 16, two test navigations for each
neural network, in two different environments, are
presented. The continuous line indicates the learned
paths, the lines with crosses represent the navi-
gations with NetA, and the lines with squares rep-
resent the navigations with NetB. Note that the
navigations have a similar performance.
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Fig. 16. Test navigations along a U-turning path.
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Table 5. Mean error values for navigations in different
conditions.

NetA NetB
normal 0.5 2.2
60 cm from origin 3.1 3.5
light changes 1.1 23
noise 1.4 36
Table 6. Computational times (in seconds).
Image processing 0.3
ANN path learning 120
ANN path estimate 0.0002
Orientation estimate 0.05

Table 5 presents the mean error values of different
navigations in the following conditions: normal con-
dition, with a starting point 60 cm from the origin of
the learned path, with great changes in the lighting
condition (lights switched on or off, window curtains
drawn or not, etc.), and with some people walking
around the robot during its navigation. The error is
measured as a percentage of the sampling step, in
this case 20 cm. As for the straight navigations, the
mean values show little difference between the
ANNs, showing that both are able to follow the
learned path.

The computational times on a Pentium 133 pro-
cessor, under Linux OS, can be seen in Table 6 (in
seconds). The image processing time does not con-
sider the image grabbing time. The path learning
time has been measured on a 100 point path, and
does not include the HV collection along the path.

9. Conclusion and Perspectives

This paper describes a path-following system that
uses an omnidirectional image sensor to grab visual
information from the environment and an artificial
neural network to learn this information along the
path. The visual information is preprocessed and

A. Rizzi etal.

compacted in monodimensional sequences called
Horizon Vectors (HV), and the path is coded and
learned as a sequence of HVs. After the learning
phase, the system can guide the robot back along
the path using the neural network position estimate
and its orientation correction capability, performed
by a simple circular correlation on the HVs.

A low cost conical Omnidirectional Pseudo Mirror
(OPM) greatly reduces the visual input data, while
the simple processing can be realised with low
cost hardware.

The system can localise itself with good precision
along a learned path, even in noisy conditions: its
performance has been tested in indoor navigation,
showing a good capability of following pre-learned
paths, even with natural small changes around the
robot (people walking, etc.).
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