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Abstract

This paper presents an algorithm that uses visual information to achieve the homing of an autonomous agent inside a
previously visited environment. An image grabbed at the target position is compared with the currently perceived one to
determine the relative position of the robot and of its target. Only particular regions of the image, called Visual References,
are taken into account. A Visual References correlation criterion that uses the Fourier—Mellin Transform to match the Visual
References in different images is employed. This transform in fact allows computing Visual References that are invariant to
rotation, scaling and translation. Robustness due to the use of the Mellin Transform in the Visual References selection and
coupling leads to more precise navigation. Tests and results are presented.
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1. Introduction

The term homing indicates the navigation process
by means of which an autonomous robot drives itself
towards a precise location. The approach proposed in
this paper derives from a biological homing model de-
veloped by Cartwright and Collett [1,2], and does not
require any preconditioning of the environment. It es-
timates the relative positions of the robot and of its
target by comparing an image grabbed at the target
position with the currently perceived one. Navigation
is performed exclusively using the visual information
grabbed at the two positions. Stable chromatic areas
used as landmarks are chosen automatically, without
user supervision, using only the chromatic and geo-
metric characteristics of the segmented images.

The main difference among the Cartwright and
Collett model and the navigation system presented in
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this paper is that the camera used in this work is not
an omni-directional one. To overcome the limitations
due to a small angle of view, the robot learns and
then approaches the homing point keeping its head-
ing constant. Doing the same from several directions
simply requires an image for each chosen direction
and a software program to switch among different
images. Using this approach, the visual landmark
changes on the image plane can be described with a
simplified affine model. Only particular visual land-
marks, automatically extracted from the image, called
Visual References (VRs), are used for the position
estimate. The robot movements can be mapped into
VRs translations and apparent dimension changes
on the camera acquisition plane. By computing the
translation and scale parameters of each VR in the
different scenes, it is possible to estimate the robot
displacement in the environment.

The proposed method can be applied only for a
final homing phase, where the system can find cor-
responding VRs in the two images. A higher-level
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navigation module is supposed to drive the robot until
it is sufficiently close to the target position, where a
valid displacement vector can be found.

The first approach developed by our research group
[3] originally compared these different VRs using
three color parameters and four geometrical param-
eters for every VR, obtaining a likelihood function
[4.5]. The coupling was then obtained by searching
the maximum of the likelihood function. In this work,
the use of Fourier—-Mellin transform [6], invariant
with respect to translations and scale changes [7], is
proposed to carry out the VRs coupling. A VR de-
scriptor containing its Fourier—Mellin transform and a
polar-log version of the bi-dimensional Fourier trans-
form is computed for each VR. This step is performed
using a gray-scale VR representation. A distance in-
dex based on the inter-correlation function is used to
estimate the VRs descriptors coupling.

A novel VR descriptor equalization has been in-
serfed to increase the inter-correlation selectivity.
Moreover the inter-correlation function between two
VR descriptors gives the relative scale and rotation
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factor that are used to perform a better displacement
estimation, increasing the system robustness.

2. The homing algorithm

The proposed algorithm can be split as shown in
the block diagram of Fig. 1. This method contains an
unsupervised visual reference selection phase that al-
lows the system to work in both conditioned and un-
conditioned environments. In this phase, the system
automatically selects the VRs according to their shape
and their chromatic components. A selected region is
called VR instead of landmark because its position in
the environment is unknown. The VRs in the actual
image have to be correlated with the VRs in the goal
position image and in this phase a measure of cou-
pling reliability is introduced. Finally for each couple,
the VR relative position information, weighed with its
coupling reliability, is used to estimate the robot posi-
tion. This estimate is based on the following simplified
affine model.
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Fig. 1. System block diagram.
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As mentioned above, the robot camera heading and
height are kept constant. These constraints allow in-
troducing a simplified affine model [3] and the fol-
lowing relations between camera translation and affine
parameters are obtained:

tx = ——ay) = Kayo, tz = Zay| = Hayy, (1)

where 1y and 77 are the components of the robot
displacement, Z is depth component of the distance
between an object in the scene and the robot cam-
era, and a,g, and a,; are the franslation and di-
lation/compression factors of the simplified affine
model.

For the test presented in this paper, H and K have
been set with a tuning phase inside the navigation
environment but H and K values are not critical,
giving only a displacement estimation proportional
factor. In fact, the proposed method uses iteratively a
qualitative vector estimate instead of a single precise
self-localization.

In order to extract the VRs from the image, seg-
mentation is performed with a region growing tech-
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nique. Not all the VRs in the image are useful for the
localization task: only a selected subset is used. The
criteria of such selection is based on area, perimeter
regularity and chromatic saturation.

3. Using Mellin Transform

Consider VR r(x, y) and its rotated, shifted, and
scaled version s(x, v), then its Fourier spectrum is

| 8w, v)| :J_ZIR[n_l[u cosa + vsina),

o (—usine + veosa)]|,

where « is the rotation angle, o the scaling factor, and
(xq, yp) the translation. It is the shifting invariant with
respect to r(x, y). Rotation and scale can be separated
by defining the r(-) and s(-) Fourier spectrum in polar
coordinates (¢, p), obtaining the following relationship
between the transforms:

Sp(0. p) =0 2R, (9 —; p) :
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Fig. 2. (a) An example of a valid VR; (b) the VR's DFT in polar-logarithmic coordinates: (c) the used equalization function: (d) the

resulting VR's descriptor.
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Rotating r(x, y) is equivalent to shifting Ry(, p) along
. By using a radial logarithmic scale the r(x, y) scale
can be mapped in the Ry shifting:

Spi(8.2) =0 ?Ry(8 —a, A — k),

where A = log p and ¥ = log o. Rotation and scaling
corresponds to Rp(6, o) shifting. A transform along
p and then a logarithmic re-mapping is equivalent to
the Mellin Transform along the same direction.

To obtain a VR descriptor, two steps are necessary:
the computation of the VR DFT module and its trans-
formation into polar-logarithmic coordinates. Since
the DFT module is even, only the first half is taken
into account. An example of VR is shown in Fig. 2(a),
and the relative DFT modulus in polar-logarithmic co-
ordinates is shown in Fig. 2(b).

In order to increase inter-correlation performance
a further amplitude equalization phase, with a simple
non-linear filter, is inserted. Fig. 2(c) shows the filter
function and Fig. 2(d) shows the results of its appli-
cation on Fig. 2(b).

4. Coupling of VR descriptors

To achieve the coupling between the descriptors the
following distance is used:

CRV, , = We - Wy — max[ges(7, ‘;"]‘], 2)
W W;

where ¢5(t, V) is the inter-correlation function be-

tween the two descriptors having energy W, and W,

respectively: T and v are the inter-correlation func-

tion variables.

Let Wy and Wy be the VR sets of the goal posi-
tion and of the actual image. with N and M elements,
respectively. A correlation matrix Cyryy is built to
contain the coupling reliability values of the W, and
W, elements. Starting from C two boolean matrices
are computed, the first Bgp act links each VR in Wy,
with the VR in W,.,. Each link is the couple that for
each element in Wy, maximizes the coupling reliabil-
ity value with Wy only the values under a thresh-
old of 2 are considered. The second matrix By, gp 1S
computed conversely.

The final VR couples are obtained looking for the
positions with the same relative index where both
By, act and By, gp have a link. If this does not happen,

the VR in Wy, is not coupled and will not affect the
localization process.

Once the correct VR coupling is found it is pos-
sible to obtain the relative rotation and scale factors.
The position of the maximum of the VR descriptors
inter-correlation function along the radial axis yields
the scale factor, while the rotation factor can be found
from the position along the phase axis. The resulting
expressions are

MAX __ XMAX

S = exp(—y—n-—), R= e 180°,

where xmax and ymax are the position of the
inter-correlation function maximum, § the scale pa-
rameter, R the rotation parameter in degrees and n the
image dimension. With these additional parameters, a
new VR coupling validation phase is added.

From the used affine model we can observe that VR
in different positions can only be scaled but cannot
rotate, therefore VR couples having a not null rotation
angle are discarded. This new validation phase reduces
the number of false couplings.

5. Displacement estimation

To estimate the robot position, a displacement vec-
tor v; for each VR couple is computed. From the affine
model presented in next paragraph two parameters a,(
and a, | must be estimated. The previous method com-
putes a, in the following way:

A(mip) — A(R)
A(RL,) + A(Ry)
A(ER:K‘:I) = A(mép]
ARL,) + ARy,)

if ADRL,) < ALy,

ay| =

if A(RL,) > AR,

where A(:) is the VR area, observing that a robot
movement in Z-direction corresponds to a compres-
sion/dilation in the VR area.

Using the Fourier—Mellin Transform the a, | expres-
sion can be replaced with the scale parameter obtained
from the VR descriptors inter-correlation function:

ay| = 1 -_'S'.'

a is then computed with the simplified affine model:

oal
ayy = (Axy —ay ‘va )+ (1 —ayy),
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! al, . sz
where (xggna 3 ygm ) is the VR center of mass position

in goal image and (Axg, Ayg) is the VR center of
mass translation. Finally, the partial vector v; is given
by (1).

The overall localization vector is computed sum-
ming all the partial vectors, weighed with their nor-
malized coupling reliability value CRV(i):

Y, exp(=CRV(i))
2 Y pexp(—CRV (i)

Y=

where N is the number of VR couples used.

If no valid VRs are present in actual image or no
valid VRs coupling are found, a displacement vector
cannot be estimated. This situation should be managed
by a higher-level navigation module.

6. Tests

Different tests have been performed in indoor en-
vironments. In Fig. 3 two examples from a real robot
navigation are shown. The first and the third frame
were taken from the goal position, while the second
one was taken from a position 1.5 m left and 2 m be-
hind the goal position, and the fourth image from a
position 2m right and 2 m behind.

Automatically computed VR couplings of the two
examples of Fig. 3 are shown in Fig. 4 (min-distance
method) and in Fig. 5 (Fourier—Mellin correlation
method). The estimated displacements resulting for
the two techniques are given in Fig. 6. As it can be
seen from the figures, the use of VR Fourier—Mellin
descriptors results in a better coupling with respect
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Fig. 5. VR coupling with Fourier—Mellin.
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Fig. 6. Displacement estimate using the min-distance algorithm and the Fourier-Mellin algorithm.
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Fig. 7. Movement estimates using (a) min-distance technique, (b) Fourier-Mellin, (¢) Fourier—Mellin and its scale parameters and (d)
comparison of the three methods.
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to the min-distance technique. Moreover, VRs scale
factor and rotation angle are automatically obtained
using the Fourier—Mellin coupling algorithm.

In Fig. 7(a) and (b) the first step estimates from
a set of points around the goal position are shown,
In Fig. 7(a) VRs are coupled using the min-distance
technique and in Fig. 7(b) using the Fourier—Mellin
matching algorithm. For better visualization, modules
of vectors have been reduced by a factor of 0.5 using
the rotation parameter obtained from Fourier-Mellin
Fig. 7(c) reduces the number of false couplings and
gives a more precise first movement estimate. Fig. 7(d)
shows a complete navigation example using the three
methods. As it can be noticed, the min-distance algo-
rithm yields to a first step failure due to false VR cou-
plings performed by the matching algorithm. The use
of the Fourier—Mellin algorithm reduces the number
of false VR couplings, leading to more precise dis-
placement estimates, and finally higher proportion dis-
placement is achieved., introducing the Fourier-Mellin
scale factor. Tests were performed using an Activ-
Media Pioneer I robot driven by an Intel Pentium II
333 MHz running Linux RedHat 5.2. The complete
navigation step was performed in about 10s using
the Fourier—Mellin algorithm (2 s for the segmentation
process and 8s for the navigation algorithm) and in
about 5 s using the min-distance algorithm. Such times
were obtained averaging several navigations with four
VRs in each image. Improvements in computation
time, if at all needed, could be obtained using dedi-
cated hardware for FFT computation and performing
a general software optimization.

7. Conclusions and perspectives

The proposed homing method uses VRs extracted
from the environment images in a completely au-
tonomous way, and computes a descriptor for each VR
using the Fourier—Mellin Transform. The main reason
for choosing this operator is its invariance to scale and
orientation. A distance measurement is used to couple
descriptors in images taken from different positions.
From the comparison of the coupled VRs, an estimate
of the robot displacement is made. Using this informa-
tion, the robot can navigate towards the goal position.
The use of VR Mellin descriptors performs better
couplings with respect to the min-distance technique

and the use of color information allows extracting
significant VRs in an easier way. An improvement
of the displacement estimate robustness is obtained
using the relative scale and rotation factors extracted
from the Mellin transform, decreasing the number of
false couplings. In this work the Fourier—Mellin algo-
rithm is applied to the VRs gray scale representation
and is more dependent on the VR shape rather than
VR color properties. However. color inconstancy,
due to different environment lighting, heavily affects
the VRs extraction phase, because, depending on the
scene illumination, the segmentation process could
give very different results. Color recovery techniques
to overcome this problem are in progress.
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