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Abstract

The paper presents a proposal for an autonomous robot
path planning system that uses several strategies to reach
a target also in an a-priori unknown environment.

The proposed method has learning capabilities that allow
the robot to take advantage of previous experience, thus
improving its performance during successive traveling in
the same environment.

The proposed multistrategic approach has been tested
both on a software simulator and on a real robot

1.- Introduction

Due to the high computational complexity of the
General Mover’s Problem [Reif 79], the whole motion
planning research community had to constrain the problem
resolution to specific robot and environmental hypotheses
[Hwang, Ahuja 92].

In this way, every strategy belongs to a particular
classical group: Classical Mover’s Problem, Circular (or
Point) Robot, Manipulator Motion Planning, Multi
Mover’'s Problem, Time Varying Environment,
Constrained Motion Planning, Movable Object.

Therefore, each navigation strategy works well in a
particular environment and with a particular robot

We can then assume that, if a given strategy has to
operate in an environment and/or on a robot different from
the ones it was originally designed for, there will always
be another strategy that has better performance in the new
situation.

For these reasons we introduce the concept of multi-
strategic approach: always use the best available strategy
to plan the path taking into account environmental and
robot characteristics. During the path, the multi-strategy
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remembers which strategy has been used to plan the
specific path measuring also its efficiency; this is quite
different from the classical approach since instead of a
“quantitative” learning (i.e. learning the geometric path)
we use a “qualitative” learning (i.e. learning the used
strategy ).

To test this theory we wrote a multi-strategic simulator
in C++, and we tested the multi-strategic approach on the
field on a Robuter robot.

2.- The state of the art

The classical approach to path planning considers
several strategic groups as described in [Hwang, Ahuja 92]
formalized by the tree of figure 1. Each group has
particular characteristics:

e Classical Mover's Problem: it is the problem of a rigid
robot traveling in a known environment among
stationary obstacles of fixed shape. The following
papers, [Lozano-Perez, Wesley 79], [Brooks 83] are
important contributions.

e Point or Circular Robot: the robot shape is circular,

therefore its orientation is unimportant and the robot

can be studied as a point. Classical works are in

[Lumelsky 89] and [Krogh, Thorpe 86].

Manipulator: the robot is an open kinematics chain

with a fixed base. Important strategies are in

[Barraquand, Latombe 90] and [Lozano-Perez 87].

e Multiple Robot (Multimover's Problem): in this group
the strategies have to plan the path in the presence of
several robots. Important works are due to [Schwartz,
Sharir 83] and [Erdmann, Lozano-Perez 86].

e Time Varying Environment: the environments
considered in this group change as time passes. In
[Reif, Sharir 85] and [Kant, Zucker 88] we can find an
approach to this situation.

e Constrained Motion Planning: Kino-dynamic and




holonomic constraints affect path planning. In [Dubin
57] and [Fortune, Wilfong 88] there are important
contributions to holonomic path planning while in
[Krogh, Thorpe 89] and in [Canny et al. 88] we find
contributions to kino-dynamic path planning.

Movable Object Problem: in this group the robot can
move obstacles to plan the path. In [Lozano-Perez et
al. 89] we can find a classical approach.

Motlen Planning
Type
of
Environmeni Time Varyng  Constrained
Type
of
Rabot FRigid Point {Ciroutar) Multipla
Type
of
Approach Call Dec: Flald Programming

Figure 1: the classification tree

3.- The proposed multi-strategic solution

As stated before, every strategy has been designed to
operate with specific characteristics in mind. For example,
in [Lozano-Perez, Wesley 79] the described strategy
operates in stationary environments with polygonal
obstacles, a single robot (not a manipulator) with
polygonal base and with total knowledge of the
environment.

In [Lumelsky 89] the strategy assumes stationary
environments, arbitrary obstacle shape, only one robot (not
a manipulator) with a circular base shape and with a local
knowledge of the environment.

Most likely, Lumelsky’s strategy could operate in the
same environments as those of Lozano-Perez and Wesley
ones but, probably, with reduced efficiency: this is because
the Lozano-Perez and Wesley strategy can optimize the
path since it globally knows the environment.

With these considerations in mind we could argue the
non-existence of an “always optimal path planning
strategy”. This is also stronger if we consider the strategy
not only as a set of movements but also in term of
sensoriality.

To formalize our hypotheses, we define a set S whose
elements are path planning strategies; we also define a set
C whose elements represent, in ways we do not formalize,
all the possible world characteristics (environment,
obstacle shape, etc.). Finally, we introduce a function 7,
whose values range from 0 to 1, representing the strategy
efficiency to travel from a starting point to a target one.
We assume 7)(Start to Target)=0 whenever the strategy
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applied in this path fails (it does not converge toward the
target position or it loops); with n(Start to Target)=1 the
strategy reaches the target in an optimal way (following
the shortest path at the greatest possible speed). In other
cases (O<n(Start toTarget)<1) the strategy always reaches
the target but not in an optimal way.

Let us assume b as starting point and ¢ as the target one;
if 5,(c,b,t) (s, €S,ceC) is the effective planned path,

our hypothesis can be formalized as:

Vb,t,Vs, e S= 3t e C,s, € S:7(s,,(2,b,1)) > 15, (T, b,1))ym#n

that means that for each strategy there exists at least one
world characteristic whose existence makes another
strategy more efficient than the former one. In other
words, we assume that there is no absolute optimal
strategy.

To operate with the multi-strategic approach we have to
divide the environment into local contexts represented by a
set of square cells (Ai) whose dimensions are
approximately the same as the size of the robot base (see
Figure 2).
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Figure 2. - Partitioning the environment in cells

The whole path, from the starting position to the final
target, can be considered as an ordered sequence of not
necessarily neighboring cells

AL =S s A= A
therefore it consists of a sequence of elementary paths
A=A
where each one can be planned using a different strategy.

The choice of a particular strategy for planning each
elementary path is left to the robot, that chooses the most
efficient one according to some given information.

The parameters we associate to each strategy, that
enable us to compare them each other, are: applicability in



a given local environment, presumable and actual
efficiencies.

Applicability criteria for a given strategy are very
difficult to define. On the other hand, it is quite easy to
state that, for any strategy s, there is at least one set of

characteristics C¢; whose existence guarantees that strategy
s, will certainly fail (for example, it is obvious that in a

dark environment all
algorithms will fail), i.e.
ﬂ(Sn(C,;,A; !AJ N=0

where ¢;; refers to the world characteristics that belong to

vision-dependent navigation

the effective path, planned by strategy s,, starting from
cell A; and ending incell A;.

The presumable efficiency is defined as the ratio
between the minimum navigation time () and the

estimated navigation time (7, ). So, for any path A, 5 A, a
minimum time 7, and an estimated time 7, ~will be

identified together with the ratio
t

=

s,
The minimum navigation time is the time the robot
would need to follow the shortest available path from the
starting position (cell A ) to the target (cell A;) traveling

at maximum speed, whereas the estimated time represents
the time the robot will presumably spend to reach the
target using the given strategy.
The actual efficiency is defined as the ratio
‘ii
r'F-'
where tﬂu is the actual navigation time, i.e. the time

that was actually spent to reach the target. Clearly, the
estimated time can be computed before planning the path
while the actual time can only be known after the robot has
reached the target position.

The robot, using the information just described, can
make a choice among the strategies it knows, and will
choose the strategy that seems the most efficient to go
from cell A, to cell A;. So, for each known applicable

strategy (n(s,(c;,A;,A;)) #0) the robot will choose the

highest actual efficiency strategy or, if the actual efficiency
is unavailable, the highest presumable efficiency strategy.

As it was said before, the robot makes its choice
according to the information included in an environmental
representation that, in our case, is not an analogue
representation of the world.

Our environmental representation is a square matrix
whose rows and columns are cells identifiers, respectively
starting cells and final position cells; each matrix element
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is linked with a table that contains a list of all the robot
known strategies, together with specific information, as
described in the sequel (see figure 3).

Starting cells
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Figure 3. - The matrix for representing paths

As stated before, the robot needs three pieces of
information from the surrounding environment; we can use
three virtual sensors to compute the data:

e VSA (Virtual Sensor of Applicability): provides a
binary response about the applicability of a given
strategy in the local environment context.

e VSPE (Virtual sensor of Presumable Efficiency):
provides a numeric measure ranging from 0 to 1 given
by the ratio

L

t

e VSAE (Virtual Sensor of Actual Efficiency): Like
VSPE, it provides a numeric output given by the ratio

L

Iy

The virtual sensors can be implemented using general
knowledge about the world and/or by using active sensing
In order to compute 7 and output of VSPE, we might

relate it to the most time-consuming robot sensing
activities. This can be done either formally (computing the
time needed for each sensing activity in a given
environmental situation) or statistically, using data from
previous applications of the same strategy. To simplify the
problem using the simulator, the output of VSPE is
provided by a human operator.

We might consider VSA as a set of rules derived from
the experience of human operators; but in the simulator, it
derives from strategy failure or success. VSAE output is




computed exactly as stated above.

Multi-strategic path planning can be achieved in three
different ways, according to the philosophy the robot uses
to collect sensory information about the local environment.
These different approaches imply different path generation
methods, therefore, the planned paths are different in terms
of complexity and efficiency. The three possible
approaches are:

e Minimum Approach: the robot plans the whole path
using only one strategy and uses it until it fails or the
target is reached. Subsequent re-planning may use
other strategies. Sensoriality is used to find out strategy
failure situations.

e Medium Approach: the robot changes strategy as
soon as it discovers certain local world characteristics
that make the strategy currently in use inapplicable.
Sensoriality is used to discover these local world
conditions.

¢ Full Approach: the robot changes strategy whenever it
finds, in any local environment, that another strategy
has a better presumable efficiency than the one
currently in use. Sensoriality is heavily used to
compute, in each cell, the efficiency of each robot
known strategy.

The chosen approach for the software simulator and the
robot test is the minimum one. ;

Target

?Falegy Sy cycles

o Start

Figure 4. - Changing a strategy when a loop is
discovered

It is obvious that once data are stored in any matrix
element, they can be used each time the robot traverses
that particular element, provided that environmental
changes are limited,

In figures 4, 5, 6 we consider three examples about
multi-strategic approaches. In figure 4 strategy s, is used
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until it fails (in this case it falls into an endless loop); then
the robot uses another strategy (5, ).

In figure 5 strategy S, is used until discovers that it is
not longer applicable; then the robot uses another strategy
(5,)-

1

5

Target

S ——

\-—.Sﬂ'&iﬂﬂ\f Sl is no

more applicable
@ Start

Figure 5. - Changing strategy when it fails

Lastly in figure 6 strategy s, is used until another
strategy becomes more efficient than the one in use; in this
case the robot uses the most efficient strategy (first 5, and
then §,).

o Target
Strategy S, has A
better efficiency than S,
--_-___--_‘*--—-..
-_-_-_"‘-———-_.__

§

P——

@ Start

better efficiency than S,

Figure 6. - Using the best strategy

4.- Issues on the multi-strategic proposed
solution

Referring to above considerations, we have to compare
the multi-strategic approach with other improvement
methods and not with particular path planning strategies.

The main difference between the multi-strategic
approach and the classic ones is that for each cell we
define the strategy and not the path needed to reach the



target. This is the same difference we can find between
Perceptive Learning (the classical approach) and
Behavioral Learning (our approach). Behavioral learning
allows the robot to consider qualitative rather than
quantitative  information about the  surrounding
environment; therefore obstacle movements and world
modifications, generally speaking, affect the multi-
strategic approach less than the classic ones.

The multi-strategic approach is especially advantageous
in case of few environment modifications; to explain this,
let us consider the unknown world the robot is moving in.
There are two possible kinds of unknown environments:
non changing (static) environment and changing (dynamic)
environment.

To formalize these environmental classes we can define
N as the number of cells into which an environment E is
partitioned, and Cp cC the world characteristics

considered at time f. If f;, and %, (with %, > 1) represent
the times at which the robot has to plan a path and M
represents the number of cells changed between 7; and I,
we can define:

e Static environment: M = 0.
e Fully dynamic environment: M — N .
e Partially dynamic environment: M — 0.

This way, we have established a link between the
environmental changes and the used environmental

rcprcsentatiunl. As the multi-strategic approach stores
needed information in the cell, we can argue the multi-
strategic behavior in different kinds of environments:

e Static environment: in this environment it is useless to
try improving the planning performance using the
multi-strategic approach; other methods based on
geometric mapping of the environment can give better
results: in fact multi-strategy performs more actions
than the strategy it uses as it senses the surrounding
environment with the virtual sensors.

e Fully dynamic environment: there is no advantage in
storing information about the environment since, each
time the robot traverses it, it is completely different
from the previous time. For this class of environments
the multi-strategic approach is a good method to face
the uncertainty of the world, but learning capabilities
of the system are completely useless.

e Partially dynamic environment: some parts of
environment do not change, and previously acquired
experience can be useful for further path-planning.

IFor the sake of simplicity, we do not take into account changes that
may occur during the navigation. It should, however, be kept in mind
that several navigation algorithms are able to cope with moving
obstacles.

5.- The simulator

In order to test the multi-strategic approach we wrote in
C++ a path planning simulator. The software simulates a
robot having 12 sonars, an odometric system, classical
movement capabilities and a set of known path planning
strategies. This approximates well the Robuter robot used
in practical experiments.

g fie tant '

PR L

ARG

Figure 7. - The simulator

At this time, the implemented simulator runs with the
“Minimum approach™; to test this approach we use simple
strategies from the Bug2 family [Lumelsky, Stepanov 86]
and more sophisticated ones GNav and LNav [Rao et al.
89]. The Bug?2 strategies were modified to further simplify
them; these modified versions may cycle.

S
G
Strategy VSA VSAE
Bug right No -
Bug left Yes 4.163579%e-04
Lnav Yes 2.765488e-04
Gnav Yes 6.089761e-04

Figure 8. - Test several applicable strategies
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We have collected several data about the proposed
path-planning method. The following figures and tables
summarize the tests performed. The S and G point are
respectively the Starting and the Goal points.

‘We can see that, assumed that the tests were performed
with the minimum approach:

e for the same environment and same G and S points we
generally have strategies that works better than others;

e for the same environment with changed S and G points
in two different tests we could have different
applicable strategies.

As we can see in figure 8 the best strategy for that
environment and with those G and S points is the GNav,

In the test performed in the environment of figure 9, the
LNav and GNav strategies are not applicable due to the
non-polygonal obstacle shape.

G
S
Strategy VSA VSAE
Bug right Yes 4.343257e-04
Bug left No -
Lnav No -
Gnav No -

Figure 9. - Test different S and G locations: 1

If we change the S and G points the applicable strategy
changes too (see G and S locations of figure 10)

After having performed several tests in a number of
different, we can point out that:

e we have collected much evidences to confirm our
initial assertion about the non-existence of an always
optimal strategy.

e the way we use to collect experience is adequate for

successive re-planning

moderate changes of the environment do not affect

significantly the quality of the collected experience.
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S
Strategy VSA VSAE
Bug right No -
Bug left Yes 4.697563e-04
Lnav No -
Gnav No -

Figure 10. - Test different S and G locations: 2

The last consideration is very important: the qualitative
learning may cope with moderate changes of the
environment. In our tests we have considered “moderate”
the change of 15% of the environment cells.

6.- Tests on a real robot

Practical tests required transferring parts of the software
developed for the simulator on a Robuter robot.

Due to robot memory size limitations we had to choose
small environment: square of 10*10 meters with square
cells of 2*2 meters. These limitations also compelled us to
operate with simple strategies: only the modified Bug
family was included. The tests were performed in a very
simple environment (figure 11).

[rareet |

i
L]

A==

Figure 11. -The simple environment used to
test the robot



The strategies selector performed well: at the beginning
it chose the modified Bug left strategy. Then, with the
same starting and target points, we compelled the selector
to use the modified Bug right strategy. The collected
experience showed that the Bug left operated better than
the Bug right; this was because the left part of the
environment was less cluttered by obstacles than the right
one. Successive automatic re-planning choose the Bug left.

During the tests we moderately changed the
environment; as stated above, the collected experience
generally was not influenced by this but we pointed it out
as it was not possible to measure the size of “moderate™
environment changes: in fact the moderate changes of size
strictly depend on the strategies used to plan the path.

7.- Conclusions

Our work has still to be completed following two main
directions:

for the “true” multi-strategic approach we have to
study and to implement the Full Approach described
above; only at that time the selector will always choose
the best strategy by continuously sensing the
environment;

e it is very difficult to implement the virtual sensors; in
fact their input assumes also the strategy to be used; we
probably have to formalize the strategies according to
their operating hypotheses.

This time, we have shown a method for planning robot
navigation which is capable of:

s selecting the apparently best suited algorithm among a
library of navigation strategies;

¢ learning about failures or successes of previously used
strategies.

The major drawback of the described methods is that it
needs some means for self-localizing, since the position of
the robot with respect to the first starting position in the
environment has to be known. Since the planning method
is not geometric, however, coarse approximations in the
localization procedure can be allowed.

The multi-strategic approach was tested either on a
software simulator and on a real robot and the tests prove
the theory.
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