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Abstract

This paper presents a proposal for a visual homing
algorithm inspired by the behaviours of social insects. The
homing method presented is based on an affine motion
model which parameters are estimated by a best matching
criteria. In the maiching phase no attempits are made to
recognise objects or to extract 3D models of the scene.
Hypotheses and perspectives about the use of single
landmarks by bees are introduced. Tests and results are
presented.

1.- Introduction

A navigation task is normally composed of two phases:
a coarse approach to the goal and a precise positioning to 1t
(homing).

Entomological studies about social insects (bees, ants,
etc.) have discovered some mechanisms of visual
navigation and landmarks use that can be useful in robotics
[Santos-Victor et al. 93, 94]. In fact, several interesting
considerations could be made regarding the ability of many
insects to return to precise locations for foraging or for
finding home [Wehner 92].

According to experiments, the strategy used by bees in
order to be able to reach a known point can be summarised
in the following two points:

e bees store images (snapshots) and remember the
apparent dimension and the position of landmarks
[Cartwright, Collett 83] surrounding a place;

e bees remember the shape, the pattern and the colour
of a landmark [Gould 86].

Experiments on ants and bees suggested in fact that an
insect fixes the location of landmarks surrounding a place
by storing a sort of snapshot of the landmarks taken from
that place; the snapshot taken from the environment 1s
considered as a constellation of objects and it does not
encode explicitly the distance between landmarks or
between landmarks and target but, instead, the position of
each landmark is labelled by its compass bearing
[Cartwright, Collet 87].

This use of landmarks is quite different from the
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classical one, where a landmark has fixed and known
position and it is usually labelled with its distance from an
important place.

In order to return to specific places, landmarks are used
by social insects in one of two different methods: dead-
reckoning and near-by landmark [Snyder 97).

The former is used, for example, by bees when they
search a zone for feeding. In this case, information about
distance and direction are provided by the dance of the
nestmates [von Frisch 71].

The near-by landmark method is used when the dead-
reckoning does not have the required degree of precision
and in general bees use it for homing or for approaching
precisely the feeding area.

An interesting model introduced to explain how bees
exploit the near-by landmark phase navigation was
proposed by Cartwright and Collett in 1983, subsequently
refined in 1987. The results of this model, simulated on a
computer, strongly resemble the actual behaviour of bees
[Wittmann 95].

In the model, bees seem to learn some information
concerning the landmarks surrounding a place through a
two dimensional picture (snapshot) memorised from that
place together with their orientation.

The steps involved for homing are then:

e matching phase: the bee compares the snapshot
stored of the place surrounding the goal with the
actual snapshot;

e near-by landmark navigation phase: the differences
in position and in dimensions between the landmarks
of the two images drives the bee for positioning.

The matching and the navigation phases have been
implemented and tested and they are presented in the
following paragraphs.

Interesting aspects concerning the use of distinct
landmarks instead of the whole image (snapshot) are
considered in paragraph 4.

2.- Matching and navigation

The visual navigation introduced is based on the
following constraints: the robot, with its visual system,
navigates without changing its vertical position, the images
are grabbed always with the same heading and most of the




objects in the navigation environment are considered fixed.

Thus an estimation of the vector pointing from the
current position to the goal could be computed comparing
positions and amplitude of matching areas in the
considered images [Cartwright, Collet 83).

This vector is computed in the following way. An affine
simplified model is introduced to describe the translations,
dilations and compressions in the whole image. According
to a set of model parameters, a new images with changed
pixels positions are computed from the actual image.
Between the new computed images the one which best
match the goal image is chosen. From this match the
motion parameters that will be used to calculate the
oriented direction for the robot navigation are extracted, as

shown in the following figure.
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Figure 2.1: Schematic diagram of the algorithm.

2.1- Projection on camera plane

The camera model maps 3D space into image plane
using central projection [Tse, Baker 91].

Figure 2.2 shows the change of apparent position of a
fixed reference objects, after a camera movement
described by vector ¢ [Negahdaripour 90].

Relations deriving from Fig. 2.2 are:

x:F_IL ‘rl+‘|
1

& (2.1.1) x'=F?-_.:: 2.1.2)
Y, =FL Y1I=F_y!
z, z,+1,
with t=(z,0,,)
where:
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* (x,.y.z) are the co-ordinates of a point in the 3D
space, with respect to the camera reference system

* (X,.Y,), are the co-ordinates of the projection of the
same point in the image plane

¢ Fis the focal length

¢ ¢ is the displacement vector.
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Figure 2.2: Movements on image plane of a fixed point
projection after a camera shift

The following is obtained by resolving f, and ¢, in
(2.1.1) and (2.1.2):

1 Y -¥,
:_:F (X, - X))z, - X,( IY. ‘):lJ {2.1.3)
- {YI.-rg)
=0 -_-_zl
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2.2- The affine model
A model that takes into account translations,

compressions and rotations of an object projection in the
image plane, caused by a change in camera-object relative
positioning, is described by the following equations [Wu,
Kittler 90] :

Si(XN)=ay +a, X+a, Y (2.2.1)
S(XN=ay, +a, -X+a,-Y
where:
* S, and §, are the displacement components in
image plane

* (X, ¥) are the pixel co-ordinates, a,, and agy are the
translation parameters

* a; and a;, are the compressions parameters

® a,, and g, are the rotations parameters.

Starting from the initial constraints some
simplifications can be made in (2.2.1). The fixed objects
constraint allows not to take into account object rotation
and moreover the vertical height constraint implies that a,,
is null. Thus the apparent vertical shift on the image plane




is due to objects compression or dilation and is taken into
account by a,,.
So, the simplified (2.2.1) is:
SI(X.Y)=X‘-X;'—'G“+G]‘X; {222)
5,(X.Y)=Y,~Y, =ha.Y,

with ag, in pixels, representing translations, a,, and
ax=hay,, a-dimensional, representing expansions.

Forcing aj;=ha,, implies that objects apparent
dimension changes are related only with z traslation of the
camera system. In fact, in the above model, perspective
distortions of objects in the image are not taken into
account, but the following matching phase allows the
systern to choose the best motion parameters
approximation from the new point of view.

2.3- The matching algorithm

The implemented algorithm finds the aon ain
parameters values that minimise the following Mean
Square Error (MSE) on the whole image [Netravali,
Haskell 88]:

MSE=— YE(XN+EX.N+EX.Y) @31

<z y>5

with £ (X.Y)=[11,,,(X.Y)=12,,,(X +S5;,Y +S,)F
where:
e M is the number of couples (X+Sx,Y+Sy) still in the
image plane S
e 1 is the goal image and /2 is the actual transformed
image

e r, g and b are the chromatic components
Sx and Sy are the estimate displacement vectors for
every pixel.

In order to speed up parameters estimation and at the
same time to allow the estimation of large displacement
vectors, a multi resolution pyramidal technique has been
implemented.

According to this technique subsampled images are
used: image at level i is obtained by subsampling by a
factor two the image at level i-1. The displacement
estimation starts from the images at a lower resolution
going up the pyramid by maintaining unchanged the
dimensions of the estimation intervals.

The parameters estimated at level i are subsequently
used at the level i-1 like offset for the relative estimation
ranges.

Before each subsampling operation a low pass seven
coefficients gaussian filtering is applied in order to exclude
possible spatial aliasing [Pratt 91].

The estimation ranges and the multi resolution levels
are chosen according to the maximum displacement
considered.

Moreover, due to the null value of the vertical shift
vertically decimated images of a factor 2*. have been used
(Fig- 3.1).

point.
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2.4- Estimation of the navigation vector

From (2.1.3) and (2.2.2) derives:

-ia, @24.1)

F
‘: =24,

rl

n

with ha=1, which links the simplified affine model
parameters, deriving from the projection changes of an
object point, with the relative camera translation.

This projection changes is related to the focal length F
of the system and to the relative distance z; of the object

Thus, the robot displacement, resulting from the use of
the (2.3.2) on the whole image, after the best matching
phase, can be calculated as:

Ax=K -a,,
Az=H-a,

(242)

where K and H derives from the average of all the
objects depth in the entire image.

The meaning of K and H in the real robot navigation
will be discussed in Par. 3.

2.5- Robust matching

Noise in the acquired images is mainly due to the

following factors:

* people moving in the room

o changes of displays on computer monitors
s lighting being switched on and off

In order to reduce the effect of such noise, the best
matching algorithm is computed minimising a different
MSE.

This different MSE is calculated in two steps: the first
step calculates the MSE on all the pixels as in (2.3.1), then
only on the pixels with a punctual square error (2.5.1)
lower than the previously computed global MSE are used
to recalculate it. The punctual pixel error is computed
using the following equation:

E, (X.N)=(1,,,(X,)=12,,,(X+5,,Y+S,)F 23.1)

3.- Tests and discussions

The navigation tests have been conducted by taking the
images from the real scene and by computing off line the
navigation vectors on a PC.

An example of real image used by the algorithm is
shown in Figure 3.1. Image a is acquired in the goal
position. Image b is obtained after a low pass filtering and
a vertical decimation of image a. Image ¢ is obtained after
low pass filtering and a vertical decimation of an image
acquired in a generic point of the navigation area.




Figure 3.1 ¢): vertically subsampled starting point image

The proposed model has been tested in two different
ways: a complete navigation process from three starting
points to the goal position and the computation of the first
navigation step from some points in the test area.

In all tests, the values of parameters H and K, after the
model calibration, are: H = -1,8 [cm/pixel] and K = 680
[cm]. Anyhow the estimation of the parameters H and K is
not a necessary step for the implemented navigation
system. Their values influence the module of the
navigation vector, not its direction. This influences the
number of steps required to reach the goal position, not the
navigation convergence to the target.

The following values have been chosen for the
parameter increment: Aa, =13 [pixel] with increment

da,, =1 [pixel] and Aa, =105 with increment
da, =005
With these values the system resolution is

+32.38 centimetres on Z axis and *1.71 centimetres on X
axis. The image obtained by the camera is 384x288 pixels.
The vertical under sampling is 4:1. The pyramidal structure
used has five levels. The camera has been always placed at
a height of about 1.2 m.

The results of a complete navigation process from each
given starting point can be seen in Figure 3.2.

Navigation errors are reported in Table 1: after two
navigation steps they are below the maximum admissible
error in centimetres for the selected parameter increment.
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Figure 3.2: Test navigation results
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Figure 3.3: Directions of every estimate displacement
vector (vector lengths are not showed)
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Figure 3.4: Target points of every estimate displacement

vector
walk steps | error (cm)
Pl 2 1.8
P2 2 8.1
P3 2 10.9

Table 1: Test error table

In Figure 3.3 the direction of the estimated
displacement vectors for the first navigation steps from
some starting points are shown.

In Figure 3.4 the estimated target point after the first
navigation steps starting from the same points of Fig. 3.3
are shown.

In the first group of tests (Fig. 3.2), the navigation phase
is completed after 2 steps, with a mean error of about 5 cm
along a path of about 720 cm: less than 0.7 %.

In the second group of tests the initial directions for
each starting point are considered (Fig. 3.3 and 3.4).
Almost all points show good navigation behaviours except
point 22: a cupboard occludes a consistent part of the
image grabbed from that point so the matching phase fails.
A wider image could overcome this situation.

4 .- Conclusions and perspectives

The homing method described in this paper has shown
good results in conducting the robot toward a goal
position, but several improvements are still possible. The
simplified model that was implemented, for instance, does
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not take into account camera rotations. A more robust
navigation algorithm should allow small rotations.

An extension of the algorithm could also deal with wide
angular images, like insects do.

Anyhow the main criticism is the computational load
that is still heavy.

Different visual navigation algorithms should be
investigated in order to accomplish a real time navigation.

Some interesting answers could be found in the Turn
Back and Look (TBL) phase fulfilled by bees [Lehrer,
Collett 94). In particular, it is asserted that a distance
estimation of the landmarks is learned during the first
departures from a place through this phase and the color
and the apparent dimension of the landmark are learned
subsequently.

In this phase bees learn the position, the shape and the
colour of useful navigation landmarks by exploiting
specific “learning flights™. In this way, an initial learning
phase could reduce the portion of scene needed to compute
the navigation vectors and consequently reduce the
computational load.

The performance improvement achieved by the use of
an higher level navigation module that activates
alternatively each different visual navigation (snapshot and
landmark) could also be explored.
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