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Abstract

POLLICINO is a system for autonomous mobile
robot self-localization along previously learmed
routes in a dynamic environment. The system is
based on a conical device that allows an
omnidirectional perception of the environment and
on a learning system. Robustness tests towards
occlusion and robot rotations are presented.

1. Introduction

This paper presents robustness tests that are being
carried on the POLLICINO' system, developed at the
Department of Electronics for Automation, University of
Brescia (Italy) and presented last year at EUROBOT 96 [1].

The aim of the tests is to measure system robustness
against random occlusions in the perception field, like
people walking around the robot and against undetected
robot rotations around a vertical axis.

Tests are performed on a simulated system, while the
real one is being implemented.

This paper mainly focuses on the problem of evaluating
and characterizing system robustness with the aim of
controlling and correcting navigation and improving self-
localization skills.

2. POLLICINO structure

The aim of the system is the localization of a mobile
robot moving autonomously in a working area in which it
has been previously trained [2][3](4]. The system operation
involves two phases: the supervised leaming of the

' POLLICINO is the Italian name of the famous tale “Tiny thumb™ by
Cl.;:lkcs Purauood It, in which a little boy must find his way back home in
a wood.
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working areas and the autonomous navigation of the robot
in the learned areas.

A feature of the localization system is the ability to
work even if the learned environment changes (e.g. people
walking around, objects that were not present in the
training phase, etc.) Tests about this capability are
presented.

The localization system is composed of the following
sub-systems:

* an omnidirectional visual perception system (CCD

camera + conical mirror);

* animage pre-processing system;

* alearning system

Conical mirror__, Localization (x,y)

| Learning System |

Uiew field

Fig. 1. Structure of the system.

The perception system generates an image of the
omnidirectional view of a section of the environment
around the robot [4][5]. It is composed of a CCD camera
facing upwards, which records the image of a cone-shaped
mirror, placed at a known distance, coaxially to the camera
lens.

Images obtained by the perception system are pre-
processed in order to simplify and enhance useful
information that is used in the learning phase.
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Fig. 2. The image preprocessing.

The conical mirror does not have to be a perfect mirror,
because the perception system is not designed to obtain a
perfect image of the environment. After the preprocessing
phase, only the mean brightnesses for each angular sector
and for each chromatic channel are extracted from the
grabbed image (Fig. 2). These data, extracted from some
images along the path, are then used, during the learning
phase, to train the neural network.

In the execution phase, the mobile robot attempts to
follow the previously leamed path. The localization
system takes advantage of the information organised and
stored in the neural network to obtain an approximation of
the actual robot position.

Long paths are divided into relatively small subsections
of the whole path.

Only the perception system (CCD camera + conical
mirror) has so far been mounted on POLLICINO, while
the image pre-processing and the learning system training
were performed off-line.

The tests on the system, limited to only a subsection of
a longer path, were performed as follows. First, images
were taken corresponding to known position given by a
sampling grid of the work area. Then, the input-output
patterns for the neural network were obtained by pre-
processing the images and associating them with the
corresponding coordinates.

Only a subset of these data was used to train the neural
network. Data not used for training were then used to
check the system ability in self-localization by measuring
the mean localization error between the output of the
neural network and the actual position.

3. The acquisition scene

A briefing room with tables and chairs has been used as
a test scene. 96 images were taken in a rectangular test
area, along three asymmetric lines and in random points,
as shown in Fig. 3. Total area dimension is 110x70 cm.

For the training phase only a subset of the regularly
sampled images has been used: 48 images in “high
density”, 16 in “mid density” and 9 in “low density”.
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Fig. 3. Sampling grid in the test area.

4. The learning systems

A modified version of the neural network used for the
previous test [6] has been used as learning system.

It is called STD3BP and it is a feed-forward neural
network trained with a back-propagation algorithm [8].
This network, as shown in Fig. 4, has two hidden layers
and an output layer consisting of two output units that
encode the position of the robot in the chosen reference
system (i.e. as X, Y co-ordinates).

Each hidden layer is completely connected to the
following layer and is composed of units with a sigmoidal
activation function.

Each unit in the first hidden layer gets its inputs only
from a group of units of the input layer, thus forming a
cluster. Moreover, input clusters are partially superposed.
This improves the robustness of the system. In this way,
small pattern rotations or moderate changes in the
perceived environment can be tolerated.

The input layer is composed by 360x3 units, one for
each degree and for each chromatic channel. This structure
is shown in Fig. 4.

XY

Fig. 4. STD3BP structure.




5. Test results

POLLICINO has been tested with STD3BP in normal
condition and the results with different density are visible
in Tab. 1.

‘High | Mid | Low
4 1.7 13.61

Tab. 1. STD3BP test results. Localization errors in em.

The best localization error, related to the length of the
path was less than 4% in high density, while the
maximum localization error was around 12% in low
density.

Error spatial distribution can be seen in Fig. 5a. 5b, 5c.
The lines indicate the error for each image in both the
learning and the testing set. These lines connect the actual
position with the estimated one.
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Fig. 5a, 5b, 5¢. Error distribution in the test area obtained with
low (a), mid (b) and high (c) learning density.

6. Test results with occlusions

The robustness of the system against “occlusions” of
the omnidirectional view field, due to the presence of
unlearned objects in the environment, has been tested. A
simple approximation of occlusion effects has been
simulated introducing noise in the original image extracted
data. This noise is supposed to simulate the presence of a
size varying, high saturated red coloured object. The effect
of the noise has been evaluated simulating the variation
both of the size of the object and its direction in the
omnidirectional view field. Four main directions have been
chosen (0, 90, 180, 270 degrees) and also different noise
sizes (2, 4, 6, 8, 10, 15, 20, 40 degrees). The localization
error obtained at low, mid and high density on two
randomly chosen points can be seen in Fig. 6a. 6b, 6¢ and
the relative data in Tab. 2, Tab. 3 and Tab. 4.
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Tab. 4. Low density occlusion test results (cm).

7. Sensitivity to robot rotation

POLLICINO does not measure the robot rotation in the
fixed reference system defined in the learning phase. Tests
were made to investigate the sensitivity of the system to
rotations.

As it can be seen in Tab. 5 and Tab. 6, small rotations
are well tolerated. Higher rotations could be managed if the
robot keeps track of its heading in the reference system. If
the robot heading is known, then a simple circular shift of
the pre-processing output data could take into account the
rotation effects.

Also in this case the tests have been performed in two
randomly chosen points in the test area and the localization
' errors are measured at low, mid and high density with
we clockwise and counterclockwise pattern rotations. Results
are shown in Tab 5 and Tab. 6.

270°

Fig. 6a, 6b, 6¢. Localization error with different occlusion size
and direction obtained with low (a), mid (b) and high (c)
learning density.

1.76 &0y 713 138
531 9 23 239 21

362 526 541 752 955
149 ke 13F 133 198

Tab. 2. High density occlusion test results (cm).

Tab. 6. Counterclockwise rotation test results (cm).
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8. Conclusions

POLLICINO has been tested under noisy conditions.

Two kinds of noise have been considered: occlusions
and rotations.

Occlusion tests simulate people walking around robot
or any not previously leamed object that hides part of the
omnidirectional view field. Results have shown that the
localization error increases slowly with respect to the
occlusion width. The position of the occlusion is very
important for the performance degradation, but this fact
depends heavily on environment data and thus is hardly

Rotations tests simulate robot skidding out of dead
reckoning control. Results have shown that the
localization emror increases linearly with respect to the
rotation. '
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