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Abstract

This paper analyzes the guidance principle and
the robustness feature of a biologically-inspired visual
homing algorithm for autonomous robots. The hom-
ing strategy uses color images and is based on an affine
matching model whose parameters are used to estimate
real navigation displacement in the environment. The
guidance principle of the visual homing is proven to be
a visual potential function with an equilibrium point lo-
cated at the goal position. The presence of a potential
Sfunction means that classical control theory principles
based on the Liapunov functions can be applied to as-
sess the robustness of the navigation strategy.

1 Introduction

Thanks to entomological studies on social insects
several mechanisms of visual navigation that can be
effectively applied to robotics have been discovered,
see e.g. [14, 15, 10, 16]. Among those mechanisms,
the so called homing process offers interesting ideas
for a computer-based implementation.

In order to return to known places, social insects
and bees in particular, use two different navigation
methods [22]: dead-reckoning and visual homing nav-
igation. Dead-reckoning is exploited by extracting in-
formation about the homing vector using polarized
light [20] and integration of image flow [16]. Visual
homing is used in the final stage of the navigation, for
a precise approach to the goal, when dead-reckoning
does not have the required degree of precision.

According to experiments on ants and bees [7], in-
sects have the ability to learn a place by storing a sort
of snapshot of the panorama to be used later for the
homing task. Insects remember not only the apparent
dimension and position of objects surrounding a place
but also their shape, pattern and color.

In particular, in [3] and [4] different computational
models explaining how bees exploit the visual hom-
ing navigation have been proposed. In those models,
through a comparison between the snapshot taken at
the goal position and the actual image, bees compute
the movements for a precise approach to the target.

Diverse theories have been introduced to explain
the biological navigation models (see e.g. [19] for a
review) but the snapshot hypotheses itself offers im-
portant starting points to implement navigation algo-
rithms.

To this extent, extensions of the above models have
been effectively used on robots in [2, 12], where a vi-
sual homing method based on a comparison between
color images has been presented. The implemented
method is composed of two phases: matching and nav-
igation. In the matching phase the robot compares
the stored snapshot of the place surrounding the goal
with the snapshot perceived at the moment. In the
navigation phase the differences in position and in di-
mensions between objects in the two images drive the
robot to the pre-learnt goal. Images are acquired with
a color camera and their comparison is performed by
applying an affine model.

The aim of this paper is to analyze the underlying
principle that drives the robot to the goal. To this
extent, recent tests reveal the presence of a navigation
vector field whose basin of attraction is placed at the
goal position [5].

Confirmations of this can be found in the results of
other experiments conducted on insects [21] or on ar-
tificial agents that use biologically-inspired navigation
methods [6].

The theory of visual potential function introduced
in [1] solves the problem of calculating the potential
function that drives a homing method. The numerical
calculation of the potential function starts considering
the navigation vector field produced by the homing



strategy. Considerations on the conservativeness of
the field play a crucial role for the process of integra-
tion and hence for computing the potential function.

Furthermore, the presence of a potential function
around the goal is a sufficient condition for the applica-
tion of the classical control theory based on Liapunov
functions. Therefore, formal considerations on the ro-
bustness for the homing method can be introduced.
In addition, the idea of applying methods from vector
analysis to navigation problems allows us to evaluate
the performance of different models and might also
represent the key point for the method to be further
extended towards topological navigations.

The organization of this paper is as follows: review
of the visual homing strategy (section 2); introduc-
tion of the visual potential function both theoretically
(section 3) and numerically (section 5); formal consid-
erations on the robustness of the method (section 4).
Remarks and future work will conclude the paper.

2 Biologically-inspired visual homing

The implemented algorithm starts from the results
presented in [4] and [23], with color images and some
constraints in the image acquisition.

The main idea is that an estimate of the vector
pointing from the current position of the agent to the
pre-learnt goal can be computed comparing position
and amplitude of matching areas in the considered im-
ages [3]. The matching between the goal image and
the actual view is performed using an affine model.
All possible affine transformations and shifts of the
actual image in the allowed range are computed and
the one that best fits the goal image is chosen. From
the parameters of the affine transformation the algo-
rithm computes an estimate of the robot displacement
from the goal position. This has been interpreted as
the distance of the robot from the goal.

Figure 1: Vertically sub-sampled goal position image

Figure 2: An example of a vertically sub-sampled
starting point image

Examples of images used by the algorithm are
shown in figure 1 and figure 2. They have been respec-
tively acquired at the goal position and in a generic
starting point of the environment. A decimation pro-
cess has been applied in order to speed up the affine
matching.

The above mentioned constraints, namely fixed
heading and constant height of the camera, allow for
the use of a simplified affine model, given by:

Sx(X,Y) =aox +a1x - X (1)
Sy(X,Y) = apy +agy - Y

where Sx and Sy are the displacement compo-
nents for the matching along x and y axes respectively;
(X,Y) are the pixels co-ordinates, agx, apy represent
translations in pixels and a;x, asy represent expan-
sions (a-dimensional). Furthermore, the camera has
been always placed at the same height (about 1.2 m)
and, due to the absence of the vertical camera move-
ment, the term agy is null. An apparent vertical shift
in the image plane can be introduced by the change
of object distance and is described by the expansion
parameters asy .

In the matching phase the algorithm finds the pa-
rameter values of the affine model that minimize the
Mean Square Error (MSE) on the three chromatic
channels of the whole image [11]. In order to speed up
the parameter computations and at the same time al-
low the estimate of large displacement vectors, a multi
resolution pyramidal technique has been implemented
as in [23]. The ranges of the parameter estimate and
the multi resolution levels are chosen according to the
maximum displacement considered.

The computation of the real displacement compo-
nents from the goal become possible with the following
relationships:
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where V. and V}, represent an estimation of the dis-
tance (along x and y axes of the environment) from
the actual position to the goal position. The values
of K and H are determined through an initial setting
phase, performed by a series of known displacements
around the goal position [12].

The system dynamical model is therefore given by:
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where x(k) and y(k) represent the coordinates of
robot at step k; Vi(x(k),y(k)) and V, (z(k),y(k)) the
displacements computed at step k following equation
2. Those displacements are related to the position at
step k given by (z(k),y(k)). Lastly, z(k+1) and y(k+
1) represent the new positions the robot will move
to. Clearly, an important equilibrium point (x*,y*)
for the system is given by the coordinates of the goal
position.

In figure 3 the directions of the estimated displace-
ment vectors V = [V, V,] for the first navigation steps
from a group of starting points are shown. The goal
(represented by a small circle) seems to be located
within a basin of attraction.

The results of a complete navigation process from
each given starting point can be seen in figure 4. The
navigation phase is completed after two steps, with a
mean error of about 5 cm along a path of about 720
cm, less than 0.7 %.

The acquired images can be affected by noise. The
major error contributions come from moving objects
(people walking, etc.) and from occlusions that cause
a punctual error higher than the average.

For this reason in the final matching phase the MSE
on the whole image is substituted by a new MSE (MSE
Enhanced - MSEE) computed only on the pixels whose
values are lower than the MSE previously computed.
This method enhances the robustness of the naviga-
tion as detailed in section 5.

A simple flow chart of the described method can be
seen in figure 5.

3 The visual potential function

A field of forces V(g) can be defined as potential
when it is produced by a differentiable function U
(called potential energy) with:

V(g) = VU(q) (4)

where ¢ is the actual configuration of the robot [8].
Classically, both U and g are mathematically speci-
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Figure 3: An example of a navigation field computed

fied. The actual configuration g of the robot depends
on the actual position of the robot: in our case x,
y and 6. To simplify the process all tests have been
performed considering a fixed 0, as detailed in the pre-
vious section. Therefore, from equations 2 and 4 and
supposing to deal with continuous-time. smooth and
differentiable V, and V,, it can be stated that:

()

A necessary and sufficient condition for the
(unique) integration of the vector field is that the fol-
lowing relation holds [17]:

WVa(z,y) _ OVy(z,y)
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called the Cauchy-Riemann condition. In other
terms:
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Figure 4: Complete navigation test

can be alternately referred with the term conserva-
tiveness.

Now, for the integration of equation 4, let ¢ be a
curve in the set of definition of the equation (our envi-
ronment) and suppose that U(z,y) is a continuously
differentiable function; in addition, let = and y de-
pend on parameter ¢, that is z = z(t) and y = y(¢) so
that the curve ¢ is parameterized on ¢ (i.e. ¢ = ¢(t));
the same holds for the directional vector 7. It can be
stated that [13]:

/VU(t) o dr(t) = U(xz(b),y(b)) — U(z(a),y(a)) (8)

where a and b are the values of ¢ which represent
respectively the initial and end points of the curve
c. Therefore, the potential function U(z,y) can be
calculated by integrating equation 4 following a given
curve c.

If the vector field V is conservative then the integral
is path independent [13]. Therefore, performing the
substitution detailed in equation 4 and computing the
scalar product, the following is obtained:

Umw:/mmmm+nmw@ (9)
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Figure 5: Flow chart of the algorithm

The process can be further simplified by following a
particular curve c. Therefore, more effectively, it can
be written as:

X Y
v y) = [ Vatepde [ Vs (10

Pa Py

where U(X,Y) is the potential function and the
path of integration is along the horizontal line seg-
ment from the initial point (p., py) to the vertical line
through (X,Y) and then along the vertical line seg-
ment to (X,Y).

Letting the initial point coincides with the co-
ordinates of the goal position helps the computing of
the potential function. Every other point is thus re-
ferred to in terms of potential to the goal position.

3.1 Issues on the non-conservativeness of
the field

The above introduced theory holds for conservative
fields but for the purpose of this paper some consider-
ations on non-conservative fields must be made.

Formally speaking, a non-conservative field is one
in which the circuitation is non-null. That is, the cal-
culation of U(z,y) depends on the path followed and



equation 8 produces different results according to the
curve that was chosen.

This potential function can be considered as multi-
valued: for every reference position, a general posi-
tion will have more than one potential value accord-
ing to the path chosen for integration. This sort of
multi-valued potential function can be translated in
non-uniqueness of the vector field. In other words, re-
peatedly placing the robot in the same point within a
non-conservative area will lead to different paths that
will be followed.

It is hard to state what kind of environmental or
system feature might be responsible for such non-
conservative nature of the field. Theoretically, how-
ever, as the field is neither stable nor reliable, the re-
peatability of the navigation does not hold and this
can lead to unpredictable navigation results.

4 Robustness of the method

In order to take advantage of the discussion pre-
sented in the previous section and supposing that all
the necessary hypotheses held, the dynamic system
presented in equation 3 is considered continuous-time
with the following (leaving out the vector notations):

&(t) = V(x(1)) (11)

where z represent the generic coordinates and an
equilibrium point x* is located at the goal position.

Several important considerations for the stability of
the system can be expressed focusing attention on its
properties.

The basic idea for verifying the stability and the
convergence is to seek an aggregate summarizing func-
tion on the states of the system. The underlying prin-
ciple is to simplify the analysis of a complex high-order
dynamic system by considering a single scalar-valued
function whose time behavior can be estimated [9].

In particular, when a dynamic system can be rep-
resented by © = f(x) with a fixed point z*, and it
is possible to find a Liapunov function, i.e. a conti-
nously differentiable, real-valued function U(z) with
the following properties [18]:

1. U(z) >0 for all x # 2* and U(z*) =0

2. U < 0for all z # z* (all trajectories flow downhill
toward x*)

then x* is globally stable: for all initial conditions
z(t) — z* as t — oo.

There are different types of system configurations:
stable, asymptotically stable, marginally stable and un-
stable, all of which are explained in terms of trajec-
tories followed by system states. In those cases Lia-
punov criteria still exist which relax the characteristics
of U(x) previously listed.

The system depicted in equation 11 is of type & =
f(z) but, unfortunately, there is no systematic way to
construct Liapunov functions.

For example, the quadratic distance of the robot
to the target (as computed by equation 3) might be
a good candidate to have the nature of a Liapunov
function. But, it can be taken advantage consider-
ing the effects of the system, that is the vector field
it produces (see figure 3). This represents the only
way to perform such analysis as we cannot predict the
analytical form of V on z(t) as depicted by equation
2.

To this extent, an important Liapunov function can
be constructed by integrating the right-hand side of
the system equation 11.

This automatically leads us to introduce the visual
potential function as a good candidate for analyzing
the overall stability of the system.

If the visual potential function had a basin of at-
traction whose the minimum is at the goal position
then the theory of Liapunov functions for the method
assures that homing is intrinsically stable, at least
starting navigating from part of the environment.

In addition, the intrinsic stability of the system
would mean that the necessity of an accurate calibra-
tion phase for determining H and K does not hold
anymore. Experiments reported in [2, 12] can be con-
sidered this way. Moreover, H and K could not prob-
ably be strongly related to a particular target, robot
and environment.

The practical computation of the visual potential
function along with the stability analysis of the sys-
tem being considered will be detailed in the following
section.

5 Tests on conservativeness and calcu-
lation of the visual potential function

In section 3 it has been stated how conservative
issues are crucial to calculate a unique potential func-
tion starting from a vector field. As it was said, for
every vector field measured during an experiment it is
necessary to compute the cross derivatives and evalu-
ate the Cauchy-Riemann condition.

To this extent, figure 6 plots the components V
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Figure 6: An example of V, and V,, and their cross
derivatives
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and V,, and their cross derivatives By and aaz
from an effective test. The cross derivatives have been
computed numerically as expressed in [17].

All the tests have been performed in the same en-
vironment reported in figure 3 and the goal position is
located in (20, 30). The point with co-ordinates (0, 0)

is placed at the top-right corner of figure 3.
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Figure 7: Conservativeness of the navigation field
adopting MSE matching

The robot has been manually placed at various
points in the environment. From those points, apply-
ing the method detailed in equation 2, a displacement
vector is computed. The iteration of the method over
the whole environment and the collection of every dis-

placement vector produces a vector field, as previously
exemplified by figure 3.

In figure 7 the conservativeness of the navigation
field computed adopting the MSE matching is shown.
The great part of the field can be considered conser-
vative. However, there are some regions of the envi-
ronment where that condition does not hold, therefore
this affects the repeatability of the navigations start-
ing from those areas. In fact, if the vector field is non-
conservative then the potential function computed is
not unique.
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Figure 8: The visual potential function adopting MSE
matching. The goal position is located in (20, 30).

The visual potential function that is calculated by
integrating the field as detailed in equation 10 is shown
in figure 8.

There are large areas of the environment from
which the navigation phase can be successfully per-
formed. Nevertheless, starting from other areas the
robot gets trapped by false goals. Those regions
roughly correspond to the bottom-right part of the
environment reported in figure 3.

The same calculations can be done by considering
the MSEE matching between images. The conserva-
tiveness of the field is reported in figure 9 and the
visual potential function is shown in figure 10.

The stability is not guaranteed for the whole envi-
ronment, as can be seen in the figures previously re-
ported. But the potential basin is better shaped than
with simple MSE and the goal position is more stable.
Furthermore, the use of MSEE instead of MSE affects
the conservativeness of the field. In addition, MSEE
enlarges the area (see figure 10 compared to figure 8)
from which the goal can be reached.
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Figure 9: Conservativeness of the navigation field
adopting MSEE matching
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Figure 10: The visual potential function adopting
MSEE matching. The goal position is located in
(20,30).

But, either MSE or MSEE cannot deal with the
intrinsic limitations of the homing strategy when the
robot is placed in some regions of the environment (in
figures 8 and 10, when = < 10 and y > 35). The
use of a camera with a limited field of view can lead
to bad navigation results: the robot is attracted to
false goals because the actual view might not contain
enough information for a good comparison with the
stored snapshot taken at the goal position. This can
be overcome by acting either on the matching method
or, more likely, by widening the camera field of view.

5.1 Issues on the visual potential as a
Liapunov function

From the potential function previously plotted it
can be easily understood why the system gets some-
times trapped into false goals or what can be the re-
gion of convergence for the main goal position.

This implicitly states that the system has not over-
all stability on the whole environment. Therefore, the
visual potential function itself cannot be considered
Liapunov compliant unless reducing its domain of ap-
plication to a region around the goal position, starting
from which the system converges.

This restricted visual potential function can be for-
mally adopted as a Liapunov function, though in a
restricted area of the environment.

In addition, the parameters H and K can be suit-
ably computed to allow for the system to be better
convergent but this needs to be further investigated.

6 Conclusions and perspectives

This paper has shown how the presented
biologically-inspired method for navigating can be ex-
plained in terms of a visual potential field. The con-
servativeness of the navigation vector field can be af-
fected by different matching or vision enhancement
algorithms.

The presence of a potential function around the
goal allows us to apply classical control theories to as-
sess the robustness of the system such as the Liapunov
functions.

The use of MSE or MSEE alone is not sufficient
to produce a potential function whose profile is glob-
ally directed to the goal. To this extent, a panoramic
field of view is thought to be necessary to produce
well-shaped potential basins where the goal is the only
global minimum. This aspect has to be further inves-
tigated as well as the relation of the introduced model



with others that consider different aspects of the en-
vironment such as landmarks.

The presence of a potential function is considered to
be important for further extending the method: sub-
goals can be automatically placed at the boundaries
of the basin of attraction.

The idea of applying methods from vector analy-
sis to navigation problems allows us to evaluate the
performance of different models and can represent an
important step for topological navigations.
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