DEVICE COMMUNITIES DEVELOPMENT TOOLKIT: AN INTRODUCTION

Riccardo Cassinis
Paolo Meriggi
Department of Electronics for Automation, University of Brescia, Italy
cassinis@ing.unibs.it, meriggi@ing.unibs.it

Andrea Bonarini
Matteo Matteucci
Department of Electronics and Information, Politecnico di Milano, Italy
bonarini@elet.polimi.it, matteucc@elet.polimi.it

Abstract

In this paper we propose the main guidelines of a toolkit
designed to allow the several different electronic de-
vices (CPUs, microcontrollers, sensor DSPs, etc.) that
compose a mobile robot and its environment to cooper-
ate as members of a community. This idea would allow
an easy modularization of complex systems that inte-
grate robots and distributed sensors, taking an effective
advantage of the newest data processing and communi-
cation technologies. The availability of many comput-
ing-capable sensing and actuating devices and of broad-
band communication channels allows us to find new
ways of implementing physically distributed systems
that can be used in the control of autonomous robots.
Our research is aimed at creating an efficient and reli-
able layered middleware in the hardware-software
structure, in order to allow each device to interact in a
transparent way with all the others, on the same ma-
chine or elsewhere.

Keywords
Mobile robotics, electronic device communities, multi-
agent systems, message oriented middleware.

1. Introduction

There is a general trend in the world of information
processing towards distributing computational tasks
among several units. The physical location where each
part of the computation actually takes place depends
nowadays much more on the capabilities of the proces-
sor and/or on other opportunity considerations than on
the vicinity of the processing unit to the place where
data are needed, as it occurred in the past. This allows
an enormously greater flexibility in the design of proc-
essing systems and of their architectures.

Networking has also become quite an independent is-
sue: most of the communication that takes place among
computational units uses the communication system in a
completely transparent way, and protocols like TCP/IP

make the user totally unaware of the physical means
that are being used to transport information.

Such considerations, together with the availability of
powerful and efficient wireless data communication
means, make it appealing to transfer the concepts of up-
to-date computing, such as client-server architectures,
applets, servlets, peer-to-peer architectures, etc. to the
world of robotics.

Obviously, since the methods that were so far developed
are mostly related to other problems than robotics, a
new dedicated layer will have to be defined and imple-
mented to allow transparent communication of “robot
related” information without losing efficiency. We pro-
pose DCDT (Device Community Development Toolkit),
a toolkit to implement such communication layer among
different devices making the underlying communication
media transparent to the developer.

The next section is devoted to a brief analysis of the
changes occurring in the Information and Communica-
tion Technology field, and section 3 is particularly fo-
cused on the implications in robotics and automation.
We will then expose the main theoretical aspects of
considering a set of electronic devices as a community
in section 4.

The overview of the toolkit’s structural aspects is shown
in sections 5 and 6, respectively dealing with a general
and a detailed description of the toolkit’s core.

A description of the ongoing and future work is also in-
cluded.

2. From Client/Server to Peer to Peer: tech-
nology trends and their relevance to robot-
ics

Although being a commonplace, it is rather interesting
for our discussion to have a look at the changes that are
occurring throughout the whole Information and Com-
munication Technology area (see e.g. [BJO 01]), and
then deal with some of the meanings of these changes
from a mobile robotics point of view.

The explosion of computational capabilities (well ex-

plained by Moore’s law [MOO 65]), the continuous

Serial
link

Figure 1 - Example of implementation of the toolkit on three different architectures.

drop of silicon devices size and cost and the growing
pervasiveness of the “Internet Paradigm” are undoubt-
edly changing our everyday habits, leading to what has
been called ubiquitous computing [WEI 93]. We are
rapidly fading from a vertical and strictly hierarchical
interaction among computers, to a horizontal, loose
peer-to-peer model, in which each processing unit be-
comes a node of a sub-part of the Net [ROM 00].
Similar trends are characterising the automation and in-
dustrial robotics progress: the new wave of smart-sen-
sors and smart-actuators [AKE 00] underlines how,
even in the more static industrial environment, the out-
come in having more computational power distributed
on the field is really remarkable.

Hardwired electronic solutions and handcrafted com-
munication protocols slow serial lines, are leaving their
place to flexible MIPS-capable processing units net-
worked through broadband Mega-BPS infrastructures,
communicating via well-known standard protocols, both
at physical and at logical levels.

Recently proposed communication standards over spe-
cific fieldbus systems testify such a trend: DeviceNET
[W-09], CANOpen [W-02], Interbus [W-05], Profibus
[W-06] and OLE for Process Control (OPC) [W-07]
represent many of the efforts the industrial world is un-
dertaking in order to appropriately use the new techno-
logical potentials.

The noticeable fact here is that the more we distribute
computing power, the higher becomes the level at which
each device can interact with the rest of the devices.
Each single device (sensor, controlled actuator, con-
troller, CPU, DSP, etc.), that used to be a functional part
of a whole, now starts being an active and in some way
independent member. In the field of robotics, this ap-
plies (or will apply in the next future) even to the most
simple and humble devices.

3. Robotics and Automation

Since when the first proposals concerning multi-robot
systems were issued, topics such as work sharing, re-
source allocation, etc. became part of the roboticist’s
glossary [CAS 86]. This became even more common
when multi-sensor systems appeared, and when robot
swarms were proposed as a solution to complex robotic
problems [SCH 00, DAL 00].

However, most researchers are still considering the
sensing system of a robot as a concentration of devices,
all physically located in the same place, i.e. on the ro-
bot’s body. Distributed sensing systems are instead
much more interesting in all those cases where robots
are to be employed in an environment that, for other
reasons, is already equipped with a communication net-
work and with sensors (for example, TV cameras), and
when multiple robots exist and co-operate in the same
environment.

The latter scheme is particularly important in applica-
tions, such as humanitarian de-mining, where it is virtu-
ally impossible to fit all necessary sensors on a single
vehicle, without making it excessively large and heavy,
but where data from multiple sensors are necessary in
order to determine whether a mine has been found or
not [CAS 00]. Other interesting applications can be
done where the robot finds an operating environment
that is already equipped, for other reasons, with sensors,
communication and computing devices, as it happens in
offices, hospitals, etc.

In order to make the system able to effectively use in-
formation from a distributed sensing system, several
stringent requirements must be met, such as a precise
knowledge of the time and of the position of each robot
when data were collected, the availability of a common
reference system, etc. In most cases, a real-time behav-
iour of the whole system is required.

More generally speaking, considering robots as com-
munities of devices that are not attached to the same

physical body allows many interesting functions to be
implemented. This affects sensors (for example, a robot
can take advantage of surveillance cameras that observe
the environment where it is working as a means for self-
localisation), but can also affect processing power, al-
lowing processing units “outside” the robot body to co-
operate, offering their services only when and where
required.

Given the heterogeneous nature of the robotic systems,
most of the distributed frameworks that were proposed
for other applications, although very interesting and re-
liable, exhibit some limitations because they were
mainly conceived for homogeneous networks of single
CPUs.

4. Communities of devices: social aspects
Several authors [ARK 98, MAT 94] have figured out
the analogy between robot sets and live beings, from
simple cells to swarms of insects, or colonies. Accord-
ing to these theories, we can consider multi-agent sys-
tems as sets of some sort.

We propose a more thorough approach: what if the ro-
bot itself were seen as a community of devices, deeply
connected with the other communities (robots) and the
environment in which they are embedded? Although
this concept is almost as old as robotics itself, it can get
a new significance if seen in the light of the new tech-
nologies we are talking about. Such approaches would
lead to the study of communities of communities, or,
better, delocalized communities.

We preferred the term community because it refers di-
rectly to the social aspects of the set. This assumption is
extremely important. If among living beings, every so-
cial behaviour is intrinsically dependent from the com-
munication, without which there could be no society nor
community, and since each mobile robot is a set of de-
vices that includes several processing units, the focus
has to be shifted to communication. From this assump-
tion, it immediately follows that considering a group of
electronic devices as a community requires a common
communication infrastructure of some sort.

Among electronic devices, however, we may find a
great variety of languages, if we consider the way de-
vices interact with each-other: serial and parallel con-
nections, networking physical media, wireless and sat-
ellite links, visual and acoustic signalling, etc. It would
be really inefficient to force all the communication
physical channels to use the same protocol, or to use the
same means. This holds true especially in the autono-
mous robots field, where sensors and actuators may be
interconnected in countless different ways.

Since a unique world-wide accepted standard for com-
munication among electronic devices will most likely
never exist, our work aims at the realisation of a mid-
dleware through which processes running on different
devices could interact with each other regardless of the
communication channel they are using, providing at the
same time a good degree of efficiency in such interac-
tions.

One possible and easy analogy of the approach we are
proposing is exactly the way human beings communi-
cate with each other at present days: there are several
physical media (Internet, TV, telephone, newspaper,
mail), and several “protocols”: English, Italian, Chinese
etc. Some of these are widely used (e.g. English Span-
ish, and Chinese), but it would be very ineffective to
impose a universal language. Sometimes the problem
can be solved using a widely-accepted language (e.g.
English on the Internet), but there are cases where the
language to be used at one or at both ends of the com-
munication channel is fixed, because changing it would
be too expensive or time-consuming. In this case, if an
appropriate interpreter is not available, communication
is impossible.

Basing our architectural view on what devices exchange
with each other and the aim of coping with highly eth-
erogeneous structures are probably the topics that
mainly differentiates our approach from other distrib-
uted systems commonly used in robotics, such as
ETHNOS [PIA 96, PIA 99], Object-Oriented Real-time
Framework for Distributed Control Systems [TRA 99],
NEXUS [FER 98], OSACA [W-03], ControlShell [W-
04], etc.

5. The Device Communities Development
Toolkit
The aim of DCDT is to provide an effective tool for
building distributed autonomous robot systems. It aims
at finding a trade-off among the following, sometimes
contrasting, features:
* Supporting easy high level development
* Supporting heterogeneous programming languages
* Supporting heterogeneous hardware
* Supporting rich communication
¢ Offering a high overall performance
The main idea of the development toolkit is to create or
extend an already existing Message Oriented Middle-
ware (MOM) [W-1] effectively abstracting a multi-
channel message transport layer to enable asynchronous
exchange of data, event notification, persistence, quality
of service, and ease of development.
Component oriented middleware presents peers with a
simple model for using remote control and processing
logic packaged as components. A peer does not have to
worry about the technical complexity of DLLs, remote
processes, dynamic memory management, and various
layers of communication: this is managed by the mid-
dleware. Peers simply request information or the execu-
tion of an action, or provide such services in a symmet-
ric and transparent way.
To reach the goals of DCDT a pure component middle-
ware is not enough: we need message reliability, true
real-time load balancing, event notification service, per-
sistence, quality of service, cross platform data mar-
shalling, and security support. This can be obtained en-
hancing the intelligence of the communication layer
while preserving the component-based model. In con-
trast with remote procedure calls, the toolkit does not

DCDT Library

Personal Computer

Dispatcher

Application
\q

Thread
Threaam“ .

v\
ERNET ,\
p

AW
INTRA-APP

Operating system

|
SERIAL
|
PARALLEL
|

Hardware

|
<_V Fi

Serial link Ethernet

Figure 2 - Example of implementation of the toolkit on three different Architectures.

model messages as method calls, but as events in an
event delivery system. Peers send and receive events, or
“messages”, via the application programming interface
(API) provided by DCDT. The toolkit enables the de-
velopment of different kinds of communities depending
on their social organization. They may offer either a di-
rectory service that lets clients look for other devices
that are acting as service providers, or all-purpose
“channels” that let a group of clients communicate as
peers, or both options at the same time.

DCDT has a publish/subscribe interface to enable de-
vices to publish and receive messages they are inter-
ested in. This is done by means of a message bus that
provides a convenient abstraction of the physical trans-
port layer managed by a common interface, imple-
mented through the dispatcher. Data coming directly
from the sensors or processed by the applications are
available to all members of the community, once they
accept to share the common layer. Moreover, provided
that all the functional constraints (maximum latency,
etc.) are respected, all members of the community may
have access to the actuators physically connected to one
of them.

The dispatcher is the real core of multi-channel man-
agement, message delivery, subscription propagation,
and service providing. Each dispatcher maintains rout-
ing tables dynamically built on peer subscriptions that
redirect information from producers to interested con-
sumers, avoiding bandwidth consuming broadcasts. It is
a task of the dispatcher to select the best communication
channel, and the particular protocol to use (i.e. TCP/IP
or UDP over Ethernet, shared memory or FIFOs for the
applications running on the same machine, etc.) ac-
cording to predefined efficiency, performance, or reli-
ability criteria. In figure 1 we can see a simple example

of a community built through the toolkit middleware.
This scheme shows three different processing units: a
common desktop PC (A), a small PC-like unit (B) and a
microcontroller (C). The first two are linked through a
LAN, while the second and the third one are connected
via a serial line. Not all the applications running on
these three devices have to use the capabilities provided
by the toolkit, nor even to deal with the OS or the rest of
the world through DCDT. We see, for instance, that on
PCI1 there are two applications which use the layer (A-2
and A-3), while a third one is simply running on the
specific OS of that machine (A-1).

The dispatcher has to deal with all the communication
channels it can “see” and that are of interest to any
member of the application of the community. When in-
stantiated, it tries to find all the communication chan-
nels available to that particular processing unit and other
members of the community. This is because it could
also be used as a sort of gateway between different
communication media, even if on the particular machine
on which the dispatcher is running, there are no DCDT
applications at all.

When a DCDT application starts running, it communi-
cates to the underlying dispatcher its needs and its ca-
pabilities via a publish/subscribe mechanism. This ini-
tial handshaking sequence (that has to be refreshed from
time to time) allows the dispatchers to easily select the
best way for DCDT applications to interact with each
other. Clearly all this raises many networking issues re-
garding routing and the dynamics involved with the
system (e.g., if a device moves from a wireless subnet to
another).

In figure 2 we can see an example of a single machine
on which two different threads are using the dispatcher,
by shared memory or other IPC mechanisms and two of

the communication channels available to that processing
unit.

From the software realisation point of view, we would
like to include our effort among those belonging to the
Open Robot COntrol Systems (OROCOS [W-08]), both
as a way of distributing and developing software. Ac-
cording to this approach the reference component mid-
dleware chosen for DCDT is an efficient implementa-
tion of CORBA [W-01, BUR 96, PAO 97]
specifications allowing different language bindings, free
licences, and supporting inter- and intra-application
communication.

6. DCDT: technological issues and dispatcher
services

The main services provided to developers by DCDT

through the dispatcher implementations can be summa-

rised as follows.

Message subscribing and filtering

The API implemented by DCDT allows the creation of
peers with the double role of information suppliers and
consumers. Peers subscribe to the information they are
interested in, and declare which information they are
able to produce; this makes it possible to introduce mes-
sage filtering policies to gain routing optimisation.
Moreover, messages have two special attributes: priority
and expiration time. The supplier of an event typically
sets these properties. There are many scenarios, espe-
cially in robotics, where the consumer’s opinion about
the relative importance of the event may differ from that
of the supplier. Therefore, also consumers are enabled
to affect the priority and expiration time of messages.
Suppliers and consumers have the ability to query the
dispatcher to determine respectively if there is absence
of clients subscribing to their specific event information,
or if there is no supplier for the information they are in-
terested in.

Quality of service (QoS) and fault tolerance

Robotics applications, and industrial ones in general,

require quality of service and reliability in message de-

livery. DCDT enables peer developers to specify the
delivery quality, giving a complete control on dispatcher
routing policies:

* Normal delivery simply invokes the underlying
physical transport layer relying only on the dis-
patcher routing service;

* Reliable delivery keeps trying to deliver the mes-
sage until the dispatcher receives a positive ac-
knowledgement from the server, or until a time-out
or error retry limit is reached;

* Persistent delivery stores a message at the dis-
patcher if the consumer is not available to receive
the message.

At the maximum level of QoS reliability, an event is

delivered to all subscribed consumers on the message

bus. If the connection between the channel and a con-
sumer is lost for any reason and no alternative routes
can be found, the channel persistently stores the event

information for that consumer. Storage continues until
the event reaches its time expiration limit, or until the
consumer becomes available again. Upon restart from a
failure, the dispatcher automatically re-establishes con-
nections to consumers that were connected at the time
the failure occurred.

Moreover, the dispatcher can be configured to occa-
sionally execute a Normal delivery as a Reliable one,
thus checking if the message is correctly delivered. If it
is not successfully delivered and no exception is thrown,
the dispatcher assumes that the subscription has gone
away and cancels it. If an exception is thrown when an
attempt to deliver fails, it assumes that the subscriber is
busy and discards the event, but it does not cancel the
subscription. The automatic cancellation of dead Nor-
mal subscriptions provides a cleanup mechanism for
subscribers that forgot to unsubscribe.

Real-time delivery scheduling

Real time is an important issue to tackle. If we decide to
distribute computational power over several processing
units, we may have different real-time granularities:
encoders and actuators, for instance, must have a very
small time granularity, in order to deal with real motions
without losing effectiveness, or worse. Instead, central
processing units may have a less strict time synchroni-
sation, allowing them to use typical non-deterministic
dynamic mechanisms such as multitasking, multi-
threading, dynamic memory allocation and so on. Nev-
ertheless, it is clearly required that tasks involved in
both low-level fast reactive loops and high-level man-
agement meet their own deadlines without delay. In or-
der to cope with such problem it is required that the
transactions between two devices are compatible with
the time constrains of the devices themselves, and so
communication must be set up at the beginning and pe-
riodically rechecked in order to ensure adequate real-
time behaviour.

Abstraction: flexibility, portability and scalability vs.
efficiency

Applications running on a device of the community may
use DCDT in order to communicate to other members
of the community, or choose to deal directly with the
connected devices through standard or custom methods.
DCDT provides a component-oriented abstraction that
allows programmers to freely choose the most suitable
programming languages and then to bind their code to
the communication API. Moreover, DCDT can be used
with different architectures: this enables the use of com-
puters as bridges or gateways between different com-
munication systems (i.e. Wavelan to Ethernet, serial to
Ethernet, etc.). Also scalability is obtained through ab-
straction; in fact, it allows the use of new communica-
tion channels and/or protocols as soon as the operating
systems are ready to handle them.

7. Ongoing and future work
The work done so far has been mainly devoted to the
realisation of the suitable infrastructures, both hardware

and software, needed for our purposes: some robots
involved in the RoboCup challenge, the robot
MARMOT (Mobile Advanced Robot for Multiple
Office Tasks) and an initial implementation of DCDT
software architecture. In particular the example of
Marmot could be helpful in explaining an important
issue of DCDT philosophy: since the low level govern-
ance of this robot is demanded to a very simple micro-
controller (Motorola 68HC11), which has very few if
any mathematical capabilities, it could rely on external
CPUs to have its trajectory calculations executed
abroad, while it continues to control the motion of the
robot.

At the present stage of the research, we are completing
the DCDT software architecture core prototyping and
testing. In fact, although the toolkit itself is conceived to
be implemented in many different ways, we chose a few
ones as an initial testbed. In particular we are testing
DCDT capabilities by means of some mobile robots,
equipped with a common CPU and Linux, intelligent
sensors (i.e. with processing units) and a microcontrol-
ler for the low-level governance of the actuators. All the
robots are connected through a wireless LAN. In addi-
tion, there are some workstations running Linux and
Windows as Operating Systems, connected both to the
wireless LAN and to the departmental ethernet back-
bone.

A possible implementation of the work we are carrying
on can be seen in figure 3: an office environment with
two robots provided with radio links, several other
computers with different operating systems connected
through a LAN, and two different “intelligent” sensors
(one acoustic and one visual). These sensors could be
connected directly to the Ethernet departmental back-
bone or even to a common office PC, which would be-
come a sort of gateway .

This configuration will be used as a basis for a growing
system that will eventually include some “almost sen-
sorless” robots: very simple machines with very small
onboard computing power, remotely connected and ca-
pable of taking advantage of the whole power of the
community.

Moreover, since DCDT is not solely dedicated to mo-
bile robotics, it could be easily extended to other do-
mains, in which there is the need to have different de-
vices interacting with each other through different
media. Possible examples could be the growing home
and office automation, telepresence, etc.

Investigation in this direction will also have to be done.

8. Conclusions

Beside all the efforts that are being made by many re-
search groups in finding new architectural structures in
the mobile robotics field, our contribution consists both
of a theoretical approach (considering a set of devices as
a community) and of a practical implementation through
DCDT.

Indeed we are only at the beginning of the road, but the
interdisciplinary view and implications of our work are
really interesting in perspective.

In this paper we introduced some of these issues, some
other are still to be faced adequately: among all, consid-
ering electronic devices as communities, raises serious
questions about the relationships involving physical and
virtual communities of human beings and of artificial
devices.

References

[AKE 00] H.A.Akeel, SW.Holland, “Product and Tech-
nology trends for Industrial Robots”, in Proc.
IEEE Int. Conf. On Robotics and Automa-
tion, San Francisco, California, April 2000,
pp. 696-700.

[ARK 98]R. Arkin, “Behavior-based Robotics”, MIT
Press, 1998.

[BJO 01] N.Bjorkman, Y.Jiang, T.Lundberg, A.Latour-
Henner, A.Doria, “The movement from
Monoliths to Component-Based Network
Elements”, IEEE Communications Magazine,
January 2001, pp. 86-93.

[BUR 96]R.L. Burchard, Feddema, “Generic Robotic
and Motion Control API Based on GISC-Kit
Technology and CORBA Communications”,
in Proc. IEEE Int. Conf. Robotics and Auto-
mation, Apr. 1996, pp. 712-717.

[CAS 86]R. Cassinis, "An Application of Automatic
Resource Sharing to Robot Programming", in
Proc. III International Symposium of Robot-
ics Research, Faugeras, Giralt (Ed.), MIT
Press, Boston, USA, 1986

[CAS 00] R. Cassinis, "Landmines Detection Methods
Using Swarms of Simple Robots", in Proc.
International Conference on Intelligent
Autonomous Systems 6, E. Pagello (Ed.),
Venice, Italy, 2000

[DAL 00]B.Dalton and K.Taylor, “Distributed Robot-
ics over the Internet”, IEEE Robotics and
Automation Magazine, June 2000, pp.22-27

[FER 987J.A.Fernandez, J.Gonzalez, “NEXUS: A
Flexible, Efficient and Robust Framework for
Integrating Software Components of a Ro-
botic System”, in Proc. of the 1998 IEEE
ICRA, Leuven Belgium, 1998.

[MAT 94IM. Mataric, “Interaction and Intelligent Be-
havior”, Technical Report AIM-1495, MIT
Al Lab, 1994.

[MOO 65]G.E. Moore, “Electronics”, Volume 38 Num-
ber 8, 1965, pp. 114-117

[PAO 97] C. Paolini and M. Vuskovic, “Integration of a
robotics laboratory using CORBA”, in Proc.
IEEE Int. Conf. Systems, Man and Cyber-
netics, Vol. 2, 1997, pp 1775-1780.

[PIA 96] M.Piaggio, A.Sgorgbissa and R.Zaccaria, “A
Distributed Architecture for Autonomous
Robots”, Proc. IEEE Int. Conf. in Engineer-

ing of Complex Systems, Montreal, Canada,
1996.

[PIA 99]M.Piaggio, A.Sgorgbissa and R.Zaccaria,
“ETHNOS-II A Programming Environment
for Distributed Multiple Robotic Systems®, in
IEEE Proc. Hawaii Int. Conf. on System Sci-
ences, Hawaii, 1999

[ROM 00G.C. Roman, G. Picco, and A Murphy:
“Software Engineering for Mobility: a
Roadmap”, in A. Finkelstein, ed., The future
of Software Engineering, ACM Press, 2000.

[SCH 00] D.Schulz, W.Burgard, D.Fox, S.Thrun, A.B.
Cremers, “Web Interfaces for Mobile Robots
in Public Places”, IEEE Robotics and Auto-
mation Magazine, March 2000, pp. 48-56

[TRA 99]A.Traub and R.D. Schraft, “An Object Ori-
ented Realtime Framework for Distributed
Control Systems”, in Proc. IEEE Int. Conf.
On Robotics and Automation, Detroit,
Michigan, May 1999, pp. 3115-3121

[WEI 93]M. Weiser, “Some computer science prob-
lems in ubiquitous computing”, Communica-
tion of the ACM, July 1993.

[] http://www.omg.org/corba/

[] http://can-cia.de

[W-03] http://www.osaca.org

[] http://www.rti.com/products/
controlshell/CS.html

[] http://ibsclub.com/index.htm

[] http://www.profibus.com
[W-07] http://www.opcfoundation.org
[] http://www.orocos.org

[] http://www.infoside.de/infida/
wissen_devicenet.htm

