

A Very Low Cost Distributed Localization and

Navigation System for a Mobile Robot

Riccardo Cassinis1, Paolo Meriggi, Maria Panteghini
Department of Electronics for Automation

University of Brescia
Via Branze 38
25123 Brescia

Italy

Abstract – This paper presents one of the first applications of a novel message-oriented middleware, DCDT,
that has been recently developed at University of Brescia in collaboration with Politecnico of Milano.

This simple and low-cost experimental application is aimed at detecting and localizing a mobile robot in
indoor environments using a commercial off-the-shelf webcam and a couple of active markers.

The most important point is that the system takes advantage of already existing computing and
communication resources, thus limiting the cost of the additional equipment to a negligible amount. DCDT, on
the other hand, reduces the burden of coordinating the various tasks and of establishing communication links to
a simple and straightforward task.

Some experimental results are included, that show good accuracy and reliability, despite the low resolution
and quality of the used devices.
Index Terms – Mobile Robotics, Localization, Low Cost, DCDT, Distributed Systems, Active markers.

1. Introduction

Taking advantage of the pervasive and ubiquitous diffusion of digital devices, we recently introduced a novel
approach [1] to mobile robotics. According to this approach, a mobile robot can be seen as the acting portion of
a distributed system, embedded in a certain environment.

In contrast to what we called the "monolithic approach" of common mobile robotics design, our goal is the
realization of light, simple and therefore low-cost mobile devices, that only carry on board actuators and sensors
that are needed for a reliable exploitation of their tasks, embedding most of the remaining portion of sensors and
processing units into the environment, using whenever possible resources that are already available for other
reasons.

Of course, this approach needs the presence of a reliable and stable communication layer. This common layer
among all the devices consists in a recently developed message oriented middleware, Device Communities
Development Toolkit (DCDT); DCDT is in fact responsible for the delivery of messages throughout the system
and, via a suitable API, manages each single task running on the processing units.

In this paper we describe one of the first real experiences that used DCDT in mobile robotics in order to
realize a small device community: the experiment, designed and developed at the Advanced Robotics Lab of the
University of Brescia, basically consisted in navigating a blind mobile robot (carrying a couple of active
markers) via the localizations offered by a webcam and a PC, using the laboratory LAN as the communication
means.

The low cost of the hardware used, the ease of development and the modularity of the Device Communities
approach attained, make the system very appealing for several robotics applications, especially in the consumer
market. Despite the economy of the system, however, the experimental results are very promising, especially if
seen in the perspective of a more extensive use of DCDT devices interacting with each other.

2. Description of the system

The system we have designed and implemented is depicted in figure 1 on the left: an omnidirectional sensorless
mobile robot, MARMOT, that only carries onboard a small microcontroller unit, is connected via a serial line

1 Corresponding author: riccardo.cassinis@unibs.it

(soon to be replaced by a wireless IEEE 802.1 link) to a PC that runs a suitable DCDT module, performing
computations required to drive the robot along pre-defined paths to reach assigned set-point.

Fig. 1. Schematic representation of the system (on the left). The omnidirectional robot MARMOT (Mobile Advanced
Robot for Multiple Office Tasks), equipped with the two active markers (on the right).

MARMOT (Fig. 1 on the right) is an omnidirectional robot designed and realized at Advanced Robotics
Laboratory (ARL) of the University of Brescia. It is built with three Mecanum wheels [2] (recently used also in
[3]). These wheels are driven by three stepping motors, controlled by a Motorola 68HC11 Microcontroller, that
receives motion commands via an RS-232 serial link.

Two active markers were placed on the top of the robot, and are used to visually localize the robot. They were
realized using two 12V halogen bulbs enclosed in small cones of colored plastic film. The chosen colors are red
and blue, in order to maximize their distance in the RGB color space, hence enhancing the probability to
correctly detect the markers.

Robot localization is exploited by means of a commercial off-the-shelf webcam: Philips ToUcam Pro
PCVC740K, priced well under € 100, with a resolution of 640x480 pixels 256 colors and a frame rate up to 30
fps. This camera is connected via a USB link to a second PC, where another DCDT Member processes incoming
images and provides the required stream of coordinates. Both computers are common PC connected with each
other and to the Internet over a 100 Mbit/s Ethernet LAN.

On both PC stations, appropriate DCDT Members run graphical user interfaces, providing the users an easy
access to the system; the most important interface of the two is indeed the one on the Webcam station, through
which the user may define the set-points sequence to be sent to the robot.

3. An Application of DCDT - Devices Communities Development Toolkit

The middleware DCDT [1] has been designed and realized to allow the joint use of several interconnected
devices, which could interact each other in a transparent way, regardless of the physical communication means
used.

By exploiting the abstraction features offered by Object Oriented Programming, DCDT provides the user a
suitable Application Programming Interface (API) to easily embed software agents into active and independent
modules. Modules, called Members, are software objects whose methods are executed in a concurrent way by
threads, and communicate with each other by sending and receiving messages according to a publish/subscribe
mechanism. Members can then be divided basically into two categories: user members, whose methods are
programmed by the user, and system members, which perform those background functionalities (just like
dispatching messages, contacting and keeping the communications with other devices, etc.).

Communication among different devices is carried out in a completely transparent way through suitable
software objects, called Channels, which are abstractions of the underlying physical means actually used.

All the modules and the objects required by the architecture, are contained within the main object, called
Agora. The whole set of the interacting members (i.e. agents) on the same or different Agorae is referred to as
the DCDT Community.

Control station

Webcam station

Robot

LAN

RS-232

As reported in Fig. 2, in this experiment the DCDT community is composed by four user members: two on
the Webcam Station (in Agora W), and two on the Control Station (in Agora C). On each Agora, one member is
functional to the robot localization and motion (i.e. Webcam Member on the Webcam Station and Control
Member on the Control Station in 0), while the other is the graphical user interface (GUI).

Fig. 2. Schematic representation of the webcam experiment

Note that some members could interact directly with other devices: Control Member on Agora C sends directly
motion commands to the microcontroller unit via serial link (since a DCDT extension for the 68HC11
microcontroller is not available yet) and the Webcam Member on Agora W acquires directly the images from the
USB camera by mean of suitable OS driver.

The interactions among user Members in this experiment could be easily sketched according the following
pattern
1. The Webcam Member acquires the image and calculates the position of the centroid and the orientation of

the segment between the two lights (when possible), providing the whole community with the requested
coordinates, according to the process that will be described in next section.

2. The GUI Member on Agora W waits for the initial position of the robot to be received and the presence of
the Control GUI on Agora C. When it receives a suitable signal from Agora C, it prompts for the setpoint
sequence to be reached by the robot, and then starts sending each single setpoint to be reached, waiting for a
message from Control Member on Agora C, reporting the conclusion of the path.

3. The Control Member on Agora C continuously receives the actual coordinates of the robot and adjust the
motion command sent to the Microcontroller in order to reduce the Euclidean distance between them. When
such distance falls within a predefined constant radius (e.g. 20 mm), the message of Setpoint Reached is
shared among the communities, triggering the GUI Member on Agora W to send the next setpoint.

The GUI Member on Agora C during the experiment has been simply devoted to the visualization of the
message traffic, mainly for debugging purposes, for its native goal should be the direct management of the robot
motion by a suitable interface panel, in case of communication failure with the Agora W.

4. Recognition Algorithm

The recognition algorithm was developed as an M.Sc. thesis work [4] and basically consists in 5 steps:
acquisition, RGB conversion, thresholding, identification and transformation.
• Acquisition : During this step the image is acquired from the webcam and saved in a suitable memory area
available to the Webcam Member. Because of the webcam features, the image is 640x480 pixels, coded
according the YUV420P2 format. Using active markers results very useful, since it is possible to tune the shutter
speed to the amount of energy emitted by the lamps, greatly reducing the false positive detection.
• RGB Conversion: this step was found to be necessary because of the really complex calculations required

2 also known as "I420", 12bpp, basic planar format, Y-U-V (Y/Cb/Cr) order

Agorà W Agorà C

Webcam
Member

Webcam

Control GUI
Member

Control
Member

Webcam Station

USB cable

LAN

Control Station

Step Motor

Microcontroller

RS-232 serial
cable

Robot

Webcam GUI
Member

when using the plain Y-U-V image format natively provided by the webcam. Instead, working with RGB images
and searching for red and blue blobs becomes simply a matter of thresholds, greately reducing calculations to
much easier comparisons.
• Thresholding: after the conversion, the whole image is then thresholded, leaving only four different colors:
red and blue for those pixels with only one of the chromatic components over threshold, white for those ones
with both red and blue components over threshold and black for the remaining pixels. The aim of this operation
is to deliver an image where it is much easier (i.e. faster) to detect the region of interest (ROI). In average
conditions, these ROIs are represented by a white blob surrounded by red or blue coronas, as in Fig.3.

Fig.3. Difference between the image of the red light before and after thresholding

• Identification : In this phase the acquired image is processed according to a blob-growing algorithm, in order
to characterize the red and blue ROIs. The detected ROIs (which could eventually be many more than two) are
carefully analysed in order to reject false assignaments (e.g. leds, neon lights or sun reflections): for this reason,
some morphological parameters of the ROIs are calculated:

1. max/min dimension ratio of white pixels blob
2. ratio of the number of blob’s white pixels and the area of the smallest square containing the blob
3. difference between the height and width of the white blob
4. max/min ratio of colored pixels
5. amount of pixels with colors different from the blob’s average coloring, which might be due to the other

marker or from natural lightning.
6. amount of white and colored pixels in the image, that indicate the possible abnormal presence of

enilghtment (for instance to the sun light, etc.)
If all these morphological parameters are within predefined limits, the coordinates of ROI centroid in the image
space are calculated and delivered. Since the pattern we are searching is basically a small group of white pixels
surrounded by colored ones, we calculate the centroids of the white blobs:

∑
=

=
N

i
iredcentroid xx

1
_ , ∑

=

=
N

i
iredcentroid yy

1
_

∑
=

=
N

i
ibluecentroid xx

1
_ , ∑

=

=
N

i
ibluecentroid yy

1
_

where N is the number of white pixels and ix , iy represents their position in image coordinates.

• Transformation : Image space coordinates []FF yx are transformed in real world Cartesian coordinates
[]WWW zyx according to the following calculations sequence. First, we have to calculate the distorted

coordinates []DD yx using their relationship with the image coordinates []FF yx , derived from a theoretical

model of the webcam that doesn’t consider parameters like Xs , empirically chosen by the user, that models the

difference in scale of the two axis of the camera’s sensitive area and
'
Xd and Yd :

() 1.' −−= XXFXD sCxdx

()YFYD Cydy −=

CY

CX
XX N

N
dd ='

where Yd is the distance between two adjacent CCD elements, CXN and CYN the number of sensor elements

along X and Y directions, XC and YC the coordinates, in pixel, of the real centre of the image.

After that, we obtain the undistorted coordinates []UU yx from []DD yx using two parameters, XD and

YD , that come from the first-order radial distortion coefficient 1κ .

XDU Dxx +=

YDU Dyy +=
where

()K+= 2
1rxD DX κ

()K+= 2
1ryD DY κ

and
22
DD yxr +=

Now we can find the first relationship with the real-world coordinates writing these equations that model the
theoretical perspective projection having as a fundamental parameter the focal length f:

f
zx

x CU
C =

f
zyy CU

C =

The triplet []CCC zyx represents the world coordinates expressed in a camera-centered coordinate system.

The third coordinate, Cz , is in effect a parameter of the system, being always constant: this is due to the
limitations in the motion of the robot, that cannot move along the Z axis; thus, knowing the height of the lights
from the ground, real world coordinates are calculated by a matrix multiplication in a 2D → 2D transformation.
This is also the reason why we can localize and navigate the robot using a single camera.

The final step allow the delivering of coordinates []WWW zyx in the Cartesian system chosen by the user:
















−
















=
















− T

z
y
x

R
z
y
x

C

C

C

W

W

W
1

R and T are, respectively, the rotation matrix and the translation vector of the webcam.
All these steps, quite simple during runtime, require a very careful calibration of the system for a good

accuracy; there are in fact many parameters related to the position and inclination of the webcam, its focal
length, its radial distortion coefficient and CCD discrete acquisition, that may easily affect the transformation
matrix, with the result of providing completely wrong coordinates.

Once the coordinates of the two lights in real cartesian space have been calculated, the position and
orientation of the robot are computed, according to the following formulae:

2
bluered

robot
xxx +

=
2

bluered
robot

yyy +
=









−
−

=
bluered

bluered
robot xx

yyarctgnorientatio

Eventually, a final minor correction is applied, that takes into account the distance between the lights, that is
fixed and known.

5. Calibration of the system

As previously described, the system calibration is a mandatory procedure for the algorithm to properly work.
The calibration procedure we have used is based on the mathematical model referred to as simplified

photogrammetric, introduced by R.Y Tsai [5], which is particularly adherent to the characteristics of the low
cost camera used (webcam), taking into consideration all those parameters like radial distortion, real image
center, etc.

The calibration procedure is really simple to work out, requiring to establish a one-to-one correspondence
between a certain set of points (for instance belonging to a grid) in the real Cartesian space and in the camera

image space. A certain number of these correspondences, in fact, might be used to calculate the intrinsic and
extrinsic parameters of the camera, which play a key role in the runtime transformations from the image space to
the real Cartesian one.

Intrinsic parameters are represented by focal length, radial distortion coefficient, actual center of the pixel
image, etc.

Extrinsic parameters are instead the rotation and translation of the camera with respect to the absolute
coordinate system used as Cartesian reference.

According to some literature examples (i.e. [6]), we found that 11 is the least number of points required, even
if a higher number is often used in order to achieve an accurate precision: in a high-precision experiment,
regarding the localization on a plane close to the camera, Tsai evaluated about 60 different points.

In order to ease the calibration task and to reduce the required time, given the amount of different
measurements to be evaluated, a suitable GUI has been realized.

6. Experimental results

The experiment was really succesfull, thanks to the precise localization algorithm that showed average errors
under 1% of the distance between the robot and the webcam (measured in static conditions), allowing several
trials to be performed correctly with low latencies both on the processing and transmission.

The choice of an active marker proved to be very good, with high stability in recognition performances, that
were quite independent from environment lighting.

The overhead due to DCDT architecture resulted very small and absolutely acceptable for a correct navigation
of the robot, proving that the device communities approach could actually find useful implementations. In fact,
the overall low cost of the system, the use of means that are normally available in many office environments
(such as personal computers, lan’s, etc.), as well as the smooth motion of the robot and the ease of development
of various DCDT Members, open new and interesting perspectives.

Moreover, from a timing performance point of view, on a common 1,1 GHz Pentium III computer, we
reached with non-optimized executables the following results, that seem quite interesting, since they allow an
average detection rate of up to 14 frames per second.

 Average time (ms) Maximum time (ms)

Acquisition 10 10
RGB Conversion and Thresholding 25 30
Identification 10 20
Coordinate transformation 25 30
Total Time 70 90

Obviously, the system has also some limitations, basically related to the quality of the images and the time

required by the five processing steps previously described: dealing with a commercial webcam, means low
quality and resolution in the image. Also, the power of the active marker had to be limited, due to the fact that
the robot is battery-driven and its energy supply is limited. The limited dynamics of the non-professional camera
become another constraint, since the characteristics of the image acquired in function of the distance, may be
very different, as reported in Fig. 4, and will eventually prevent a proper detection of the lights in the far field
(about 8 meters and above from the webcam standpoint).

Fig. 4. Images of the red light at different distances from the webcam

For these reasons, the system may perform quite well only in indoor plain environments, where the external light
(i.e. the sun) and white reflexes are almost absent. Moreover, the robot needs to move in a confined space (up to
8 m from the webcam) at a reasonable speed according to the camera frame rate and the processing power
available. In our case, we found that an average speed of 500-800 mm per second could be quite precisely
tracked by the system. It is obviously possible to use multiple cameras, as it will be done in future experiments.

7. Conclusions and future works

In this paper we presented a first simple implementation example of a recently developed middleware, called
DCDT, to foster what we have named Community of devices, leading to the realization of feasible and low cost
mobile robotics infrastructures.

Being only at the beginning of the research, there are many possible evolutions and way of improving the
system:
• The realized code might be optimized with the result of faster execution and better timing performances;
• More sophisticated filtering approaches (such as Kalman or nonlinear techniques) could be implemented

in order to enhance the detection of the colored blob centroid and reject false positives ;
• Expand the system with the presence of more than one camera covering a broader area and connecting

the robot via IEEE802.11b wireless network;
• Test the improvement which can be achieved using cameras with greater dynamics;
• Enhance the robustness of the system by toggling on/off or otherwise modulating the emissions of

markers in order to have the system recognize and properly localize the robot, for instance if in presence
of false recognitions.

Nevertheless, the results achieved even in this early stage in term of precision reached, low cost, ease of
implementation, are indeed promising and suggests several possible industrial applications.

References

[1] R. Cassinis, P. Meriggi, A. Bonarini, and M. Matteucci, "Devices Community Development Toolkit:
An Introduction," presented at Eurobot '01, Lund, Sweden, 2001.

[2] G. Wampfler, M. Salecker, and J. Wittenburg, "Kinematics, Dynamics, and Control of Omnidirectional
Vehicles with Mecanum Wheels," Mechanics of Structures and Machines, vol. 17, pp. 165-177, 1989.

[3] P. d. Pascalis, M. Ferraresso, M. Lorenzetti, A. Modolo, M. Peluso, R. Polesel, R. Rosati, N. Scattolin,
A. Speranzon, and W. Zanette, "Golem Team in Middle-Sized Robots League," in RoboCup-2000:
RObot Soccer World Cup (IV), G. Kraetszchmar, Ed. Berlin: Springer Verlag, 2001, pp. 603-606.

[4] M. Cagno and M. Panteghini, "Un Sistema Distribuito per la Localizzazione di Robot Mobili dotati di
Marker attivi," in Department of Electronics for Automation. Brescia, Italy: University of Brescia,
2002.

[5] R. Y. Tsai, "A versatile camera calibration technique for high-accuracy 3D machine vision metrology
using off-the-shelf TV cameras and lenses," IEEE Journal of Robotics and Automation, vol. 4, pp. 323-
334, 1987.

[6] H. Bakestein, "A Complete DLT-based Camera Calibration with Virtual 3D Calibration Object," in
Department of Mathematics and Physics,. Prague: Charles University, 1999.

