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Abstract

This paper presents a novel approach to the detec-
tion of anti-personnel landmines that uses teams of
cooperating robots. Following hints that originate both
from classical robotics and from biology, we aim to
defining a set of search strategies suitable for being
used in an obstacle-cluttered, two-dimensional space.
The paper presents the guidelines of the project, the
search strategies that were developed, and the descrip-
tion of a simulator that was designed and implemented
to test them.

Brief reviews of the available techniques, of the
sensor technologies, and of the current uses of robotic
devices in humanitarian demining are also included.

1 Introduction

Landmines constitute a significant barrier to eco-
nomic and social development for the inhabitants of
more than sixty countries. Their capability of remain-
ing active for years after a conflict has come to an end
poses a major restraint on post-conflict reconstruction.
Despite international efforts to ban the production and
use of landmines, the situation continues to deteriorate
with landmines being laid about twenty times faster
than they are currently being cleared [1].

Demining is an operation filled with risks that cur-
rently mainly relies on the skills and patience of coura-
geous individuals. The risks are due to the fact that
demining functions are tedious and repetitive, yet de-
mand the application of precise standard actions.
Analysis of these actions shows that some of them
could be more easily and safely performed by robotic
systems. From this perspective, these systems appear

to have a role to play in finding and removing millions
of landmines from around the world. Obviously, the
solution of the problem requires both the construction
of autonomous and reliable machines that can operate
in rough terrain, and the capability of detecting with
good precision and high confidence the location of the
mines. In this work, we have defined some search
strategies, based on the use of swarms of small robots
that have different functions and sensorial capabilities,
as it happens in some animals societies such as wasp
colonies, fish schools, ants and termites.

2 The problem

The detection of buried landmines for humanitarian-
demining purposes is nowadays mainly performed by
human operators [2]. Potential mines are located using
metal detectors or by hand probing methods. The probe
used is generally just a sharp stick or bayonet which is
inserted into the ground at an angle not greater than 40°
to the horizontal at 2 cm intervals until some
resistance is encountered. The effectiveness of metal
detectors is often nullified by mines with extremely
low metal contents or by soil with high ferrous materi-
als percentage. In fact, there may be up to 1000 metal
fragments to be investigated for each discovered mine,
resulting in potentially lethal deminer fatigue. 80% of
all clearance accidents occur during the investigation of
metal signatures. In the probing method, accidents are
mainly caused by landmines that for any reason were
moved away from their original horizontal position.

Several other methods, such as using dogs that
sniff the explosive contents of the mines, are also used,
but have significant limitations and cannot be regarded
to as general-purpose solutions. In order to reduce risks



to human operators some mechanical implements, such
as flails, rollers and mine plows have also been devel-
oped, although they do not achieve in most situations
the standard required for humanitarian demining (guar-
anteed 99.6% clearance):

1. Flails are mechanical devices, which repeatedly
beat the ground, typically with lengths of chain.
These chains are attached to a rotating drum and
their impact on the ground causes the mines to ex-
plode. These devices can cause severe damage to
cultivable land.

2. Rollers generally consist of a number of heavy
circular discs, which are rolled along the ground in
order to cause the explosion of any mines.

3. Plows are generally used for breaching a path
through a minefield, as they usually just push the
mines to the side. Some plows also attempt to
sieve the mines from the displaced soil.

Current technology suggests that robots could be
used instead of humans to perform demining, since this
application area appears to be perfectly matched to the
multi-robot systems concept in the following respects:

1. Minefields are dangerous to humans; a robotic
solution allows human operators to be physically
removed from the hazardous area;

2. The use of multiple, inexpensive robotized search
elements minimizes damage due to unexpected ex-
ploding mines, and allows the rest of the mission
to be carried on by the remaining elements;

3. Many kinds of mines must be dealt with; the use
of many robots allows all targets to be pursued in
parallel, rather than one at a time [3];

4. A number of sensors have been developed whose
information can be related to the presence or ab-
sence of mines [2]. Among these; the most com-
mon are ground penetrating radar (GPR), bio-sen-
sors that detect explosive vapors, and sensors that
use infrared imaging, thermal neutron analysis,
electro-magnetic induction, RF/millimetric radi-
ometry and X-ray backscatter. None of these sen-
sors on their own is however sufficient and hence
some combination of these sensors must be used.

It is then quite obvious that best results would be
obtained if multiple robots were used. In order to
demine effectively, the robots should exhibit a number
of attitudes, such as avoiding interference with each
other, covering the terrain effectively, sharing the

workload, helping each other by providing comple-
mentary information via different sensors, and should
be capable of dynamic redistribution of the workload in
case of robot failures.

Our work investigates the use of teams of variously
equipped robots, with different sensors devoted to
mines localization. We are not dealing here with any
particular kind of sensing device: we only assume that
each sensor can detect some sorts of mines located
within a given radius. Using a multi-robot approach
yields a redundancy that raises the probability of locat-
ing mines in at least two different ways. If the robots
are all equipped with the same sensors, re-exploring the
same area leads to greater chances of locating previ-
ously undetected mines.

On the other hand, if they are equipped with differ-
ent sets of sensors, data fusion techniques can be used
to locate mines that are undetectable by a single sensor,
without having to deal with complex, heavy and ex-
pensive multi-sensor robots. Using multiple, simple
robots can also yield other advantages, such as allow-
ing simple configuration of the searching team accord-
ing to the kind of mines that are likely to be found in
each demining campaign.

The problem of controlling robot teams is very im-
portant and requires great attention. The drawbacks of
traditional centralized control are high computational
and communication complexity, lack of flexibility and
of robustness. Therefore, a distributed control approach
is more suitable for the control of systems that include
a large number of robots as well as for systems where
information about the environment is being collected
or sensed by the robots themselves. In such a distrib-
uted-control framework, each robot decides its own
movements by observing the environment at that
moment and applying some pre-defined control laws.
The main idea is to design control laws such that the
robot system as a whole will achieve the given goals,
such as collision-free navigation or forming a spatial
structure.

3 Strategies

A collection of robots moving in the same work-
space which plan collision-free motions and, at the
same time, get from an initial configuration to a goal
configuration can be regarded to as a multimover's
problem (see e.g. [4] for an excellent in-depth study).



Basically, the robots interact with each other auto-
matically leading towards a consistent growth in terms
of computational complexity.

Essentially, the two possible ways to tackle the
problem are centralized and decoupled (or distributed)
planning.

The former consists of planning the coordinated
paths of multiple robots as a path in their composite
configuration space as, for instance, the cell decompo-
sition method presented in [5] or the potential field
method followed by [6].

One way to reduce the computational load for the
multimover's problem is to adopt decoupled planning,
i.e. firstly each robot is seen as independent from the
others, while interactions among robots are evaluated at
a later stage.

A decoupled plan might fail if compared to a plan
performed in a centralized manner, the reason being that
the former yields sub-optimal yet heuristic solutions.

Some examples of decoupled planning are the pri-
oritized planning [7] and path coordination [8].

The vectorial movement strategy described in the
sequel can be regarded to as a decoupled planning. Ro-
bots are free to plan their own motions considering
local and global information vectorially. The right con-
figuration among them is effectively maintained by
adding a swarm control vector.

Strategies for robot swarms navigation require ro-
bots capable at least of some basic behaviors such as
avoiding obstacles, finding the mines, following a spe-
cific path, maintaining a formation [9, 10]. Generating
a non-trivial behavior requires effective use of multiple
basic behaviors. In this research the problem has been
solved with a vectorial movement [11] using a specific
vector for each of these basic behaviors. Four vectors
have been defined:

1. V1, used for avoiding obstacles: it can suppress all
other vectors for the time necessary to move past
the obstacle;

2. V2, used for achieving a goal;
3. V3, used for maintaining the position in a specific

formation;
4. V4, for maintaining the robot direction.

An example of this vectorial combination is shown
in Fig. 1, which shows a situation where there are no
obstacles along the path of the robots and the team has
to maintain a particular formation. When a robot of the
team must avoid an obstacle, vectors V2, V3 and V4

are suppressed by V1, that is calculated based on the
values read by the onboard sensors. In our simulation
each robot has eight sonars, one or more sensors for
mines detection and a positioning system such as
odometers, GPS or DGPS.

Figure 1. Vectorial combination: the three robots
move towards a goal position with V2 and tend to
maintain a wedge formation with V3, that “pulls” them
towards their correct positions, indicated by the small
squares.

Using this method, we have so far defined, simu-
lated and compared six strategies:
1. Random movement;
2. Relay clustering;
3. Flocking;
4. Swarming;
5. Formation maintenance;
6. Comb movement.

Random movement: Vectors used in this strat-
egy are simply V1 and V4. V4 is used for the base
random movement and V1 for avoiding obstacles and
other robots.

Relay clustering: The movement of robots is
initially random. When one of them finds a mine, it
initiates the relay by transmitting the signal I found a
mine in position (x, y). Any robot that can find this
kind of mine, within communication range of the first
robot, heads towards it while transmitting I see a robot
that found a mine in position (x, y). Any robot within
range of the second robot but not of the first one
transmits I see a robot that sees a robot that found a
mine in position (x, y) and heads towards (x, y). In this



strategy V1 is used to avoid obstacles, V4 to move
around at random until no mines found for a given
amount of time, and V2 is used to move towards the
mine. This strategy exhibits an emergent behavior that
resembles very closely the way some ants behave when
one of them discovers a food source.

Figure 2. Relay Clustering: in the first phase, Ro-
bot2 and Robot4 go towards Robot1, that has found a
mine. Robot3 still moves at random because it is out
of Robot1 range of influence.

Figure 3 .  Flocking: each robot adds a vector of at-
traction/repulsion and a component of alignment to the
other robots.

Flocking: Flocking occurs in nature and is
exhibited by birds, fish and some insects.

This behavior is based on the principle that there is
safety in numbers and the whole is more important
than the parts. The three rules that implement flocking
are:

1. Cohesion: each robot shall steer to move toward
the average position of local flockmates;

2. Alignment: the robots will align to the same direc-
tion as their neighbors;

3. Separation: all robots in the flock will maintain a
separation distance from their fellows.

These three components are added to obtain V3. V2
in flocking is not necessary because the movement of
the team is random.

Figure 4. Swarming: robots in one team repel robots
of another team with v33; v31 is used for attrac-
tion/repulsion; v32 for alignment.

Swarming: This strategy works like flocking as
far as robots belonging to the same team are concerned,
but the flock is split in several teams. Different teams,
to avoid each other, must follow these rules:

1. Attraction: each robot is attracted to its fellows as
the distance between them increases.

2. Alignment: the robots will align to the directions
of their fellows.

3. Repulsion: each robot is repelled by robots be-
longing to another team.

These three components are added to obtain V3. V2
here is not necessary because the movement of the
team is random.

Formation maintenance: This is the first
strategy that has a coordinated movement for all the
teams. Each team can move using a different forma-
tion. Currently, there are three available choices: line,
column and wedge. The position of each robot in the
formation is fixed relatively to the team centroid, and
V3 is used to keep this position. In this strategy, each
team follows a specific path defined by an array of



points. The movement of each team is obtained with
the component V2 oriented from the actual team cen-
troid to the next point in the array. Fig. 1 shows an
example: the square points are the positions to be kept
in a wedge formation and each robot has V3 pointing
towards these points.

Figure 5. Comb Movement: a team of three robots
during comb movement.

Comb movement: This strategy is similar to
formation maintenance, but the formation changes
from line to column, and vice-versa, passing from a
goal to another one. This change realizes a “comb”
movement. The robots calculate their next goal point
during the movement, operating as in Figure 5.

4 The simulator

The simulation environment should provide an ac-
curate estimate of robot performance in the real world.
Simulation is desirable because it offers a means to test
many robot system configurations quickly, and, due to
the particular nature of the application, this is obvi-
ously very important. The test environment for this
research, that is based on the Kephera robot simulator,
was written in C using the X Windows graphics pack-
age. The user interface of the simulator is shown in
Fig. 6 and 7. It should be noted that color is an impor-
tant component of the interface: the authors wish to
apologize for the poor legibility resulting from
greyscale printing. The robots can sense their location
in the environment, and detect obstacles, mines and

other robots. The current software configuration allows
using three squads of robots, plus a fourth one that
simulates removal of detected mines. Each squad can
have up to four robots. Mines of different kinds can be
laid in the field, along with obstacles such as walls,
trees, etc. The capability of each robot of detecting
more than one kind of mine allows studying methods
for increasing the reliability of the system.

Figure 6. Robot Swarm during a simulation.

Figure 7. Robot Swarm control panels.

Robot Swarm allows simulating and checking
other interesting things, such as robot failures, sensor
data values, etc.

In order to make comparisons among different
strategies possible, a performance metric had to be es-
tablished For this research, the time needed to complete
the task was chosen as the primary performance index.



Figure 8. World 1: Stones (rectangular), a few trees
(large circles) and 30 randomly placed mines of three
different kinds (small circles).

Figure 9. World 2: same as world 1, but cluttered
with more obstacles.

Figure 10. World 3: Same as world 1, but the mines
of the same kind are gathered together in the field. This
situation is very likely to occur in real minefields

Working in the three worlds of Fig. 8, 9, and 10,
we have performed five tests:

1. Working in the world of Fig. 8, we compare the
performances of all strategies (Fig. 11);

2. Working in the world of Fig. 9, we compare the
performance of each strategy against the corre-
sponding strategy in Test 1 (Fig. 12);

3. Working in the world of Fig. 10, we compare the
performance of all strategies with the results of
Test one and two (Fig. 13);

4. We plot the number of found mines vs. the time
that was required to find them for teams of one,
two, three and four robots, and for all the strategies

5. We plot the performance while adding a random
noise that affects the sensors

Results of Test 1 are shown in Fig. 11, that indi-
cates the number of time units required to clear World 1
with different numbers of robots. Performances of the
strategies without a specific formation (1, 2, 3 and 4)
are worse than performances of the coordinated strate-
gies (5 and 6). This is because the latter strategies only
explore each point with a single robot, and only once
during the whole process.

Figure 11. Test one: time required to clear World 1.

The results of Test two, compared with those of
Test one, are shown in Fig. 12, where we plot, for
teams of one, two, three and four robots, the number of
time units required for clearing world 2. Since this en-
vironment is heavily cluttered with obstacles, the per-
formance of all strategies is worse than performances in
test one: however, coordinated strategies work still
better than random ones.

The results of Test three, compared with results of
Test one, can be seen in Fig. 13, where we plot, for
teams of one, two, three and four robots, the number of
time units required to clear world 3. It is interesting to
note that Relay Clustering performs much better than
in the previous examples. Formation Maintenance and



Comb Movement do not change, because they are in-
dependent from the position of mines.

Fig. 14 shows the results of test four. These
diagrams show, for various strategies and numbers of
robots, the time required to achieve a given number of
found mines. Since all worlds contain 30 mines, the
last plotted time indicates the total time required to
complete the task. Not surprisingly, coordinated
strategies find mines at a constant rate, while
uncoordinated ones are more efficient when many
mines are still undetected. Furthermore, increasing the
number of robots per team does not necessarily yield a
significant reduction of the required time.

Finally, Fig. 15 plots the performance in function
of the sensitivity of mine detection sensors. It can be
easily seen that the relation is non-linear. This point is
still under investigation.

5 Conclusions

A currently ongoing research that aims at using
groups of robots equipped with various kinds of sen-
sors has been illustrated. Emphasis was placed on two
main points: clusters of well-organized robots work
better than single machines, and strategies to be used
when odor sensors are employed need thorough inves-
tigation.

Robot Swarms is a part of a much more complex
project named “Mine Sniffer”, that will use real robots
for final testing of the developed methods. Two work-
ing prototypes, Speedy and Tobor, have already been
already realized, but a simulator is mandatory if the
behavior of a large number of cooperating robots has to
be studied.
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Figure 15. Test five: performances with different sen-
sor sensitivities.



Figure 12. Test two.

Figure 13. Test three.

Figure 14 .  Test four for (from top to bottom):
random movement, relay clustering, flocking,
swarming, formation maintenance, comb movement.


