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1. Controlling a Robot 
What does it mean to write programs to control a robot?  Robots can sense the world 

and act within it; so, in general, a robot control program is one that takes the robot’s 
sensory input, processes it, and decides what motor actions the robot will perform. But 
the mapping between inputs and outputs is a very complex one, and the control task 
requires some decomposition into simpler elements to make it workable.  In recent years 
there has been some convergence on an architecture for autonomous mobile robots.  In 
general form it looks something like the diagram in Figure 1-1.   
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Figure 1-1  A hybrid control architecture 

The bottom layer is a controller that implements some form of motion control for the 
robot.  This layer can be quite complex; for example, in the Saphira architecture it 
consists of a fuzzy controller that implements a set of behaviors for achieving goals such 
as corridor following, obstacle avoidance, and the like [Kon97].  The second layer is a 
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sequencer that initiates and monitors behaviors, taking care of temporal aspects of 
coordinating behaviors, such as deciding when they have completed their job, or are no 
longer contributing to an overall goal, or when environmental conditions have changed 
enough to warrant different behaviors.  The sequencer must complete its computations 
in a timely manner, although not as quickly as the control layer.  In the top layer, long-
term deliberative planning takes place, with the results being passed down to the 
sequencing layer for execution.  Generally, the planner is invoked and guided by 
conditions in the sequencing layer, e.g. a task failing or completing. 

There are many different instantiations of this architecture, including Saphira 
[Kon97], SSS [Con92], ATLANTIS [Gat92], RAPs [Fir94], AuRA [Ark90], and 
Payton's reactive planners [Pay90].  In almost all of these, the sequencer plays the role 
of the main executive, taking advice from the planner and invoking behaviors to 
accomplish goals.  When one thinks of writing robot programs, it is sequencer programs 
that are the result.  In fact, it’s possible to think of the planner as an automatic generator 
of robot programs, which are then executed by the sequencer. 

 Most of architectures mentioned in the previous paragraph concentrate on the 
interaction between the layers, how to integrate behaviors, sequencers, and planners.  In 
contrast, in this paper we are concerned with how a user can write sequencer programs 
to effectively control the robot.  Our emphasis is on issues of language and semantics: 
what is a good language for robot programs, what kind of semantics is appropriate for 
the sequencer, and how does the language fit the semantics.  The result of our inquiries 
is the sequencer language Colbert, a part of the Saphira architecture. 

Colbert draws on two sources for its concepts.  The first is finite state automata 
(FSAs) [Hop79].  FSAs are ubiquitous in computers and robotics, because they provide 
a way of defining a mapping between the internal state of a automaton and its operation 
in the world.  When you drop coins into a soda machine, its internal state changes, until 
it gets to a state in which you’ve paid enough; then it drops a soda.  FSAs are a great 
way to encode procedural knowledge: knowledge of how to achieve some goal.  This is 
especially true when the procedure includes conditional actions, which must test the 
state of the environment to make a decision about which action to perform next.  In 
Colbert, a program is an activity whose semantics is based on FSAs. 

The second source of inspiration is from concurrent processes.  Complex robot 
control problems are often best decomposed into sets of concurrent processes that 
communicate and coordinate their activity.  In Colbert, a set of activities executes 
concurrently to achieve a goal.  Activities have a hierarchical structure (one activity can 
spawn another, and is its parent).  Activities communicate through a global data store, 
and by sending each other signals. 

Having an adequate semantics doesn’t mean that control programs will be easy for a 
user to write or debug.  In fact, writing FSA structures directly is not a pleasant task, and 
all modern computer languages use implicit sequencing and explicit looping statements 
to define the flow of execution control.  It would be nice to use a language that has 
familiar control structures, so that users would not have to learn another programming 
language.  With this in mind, we chose for Colbert a subset of the ANSI C language, 
along with a few extensions for robot control.  Surprisingly, even though the semantics 
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is based on FSAs, there is relatively little that a C programmer must learn to begin 
writing correct robot control programs. 

A second user concern is the ability to debug and edit control programs as part of the 
development cycle.  A problem with developing using C is that the compile-load-debug-
edit-recompile cycle is tedious, and getting back to where the mistake occurred can be 
time-consuming or even impossible when dealing with robots operating in a real-world 
environment.  All of these issues indicate that an interpretive development environment 
is desirable, where errors are signaled, the user can examine the state of the system, 
make changes to programs, and continue with the changed program.  We have 
implemented a Colbert evaluator that executes source language statements directly, so 
that programs can be modified during execution.  The evaluator also allows the user to 
probe the state of the system during execution to determine where errors occur, and to 
load compiled C code for efficient execution of compute-intensive routines as part of an 
activity.  

Finally, we have tried to make Colbert efficient and portable to most operating 
systems. The evaluator is fast enough to be used for production robot programs; but it is 
also possible to compile Colbert activities into native C code for even more efficient 
execution.  Since the Colbert executive is written in C, and requires only minimal 
support from the OS, it can run under most OS’s: we have implemented versions on 
most Unix systems, and on Windows 95/NT. 

2. Activity Examples 
Activities control the overall behavior of the robot in several ways. 

• Sequencing the basic actions that the robot performs. 
• Monitoring the execution of basic actions and other activities. 
• Executing activity subroutines. 
• Checking and setting the values of internal variables. 

In this section we’ll look at some simple examples of robot behavior.  These 
examples will illustrate the functionality of activities in controlling robot behavior.  A 
more detailed discussion of the syntax and semantics is in subsequent sections.  

2.1 Patrol 
We want the robot to patrol up and down between two goal points, repeating this 

activity a specified number of times.  The basic actions the robot can perform are (1) 
turning to a heading, and (2) moving forward a given distance.  For this example we 
won’t worry about the problem of robot localization, that is, how the robot will maintain 
registration between its internal map (the two goal points) and the external world. 

The simplest way to realize the patrol activity is as a perpetual while loop, in 
which the primitive turn and forward motion actions are executed in sequence.  Here is 
the proposed activity schema: 
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act patrol(int a) 
{ 
 while (a != 0) 
 { 
  a = a-1; 
  turnto(180); 
  move(1000); 
  turnto(0); 
  move(1000); 
 } 
} 

Figure 2-1  A simple patrol activity 

This simple example illustrates three of the basic capabilities of the Colbert control 
language.  First, the two basic actions of turning and moving forward are sequenced 
within the body of the while loop.  As each action is initiated, an internal monitor 
takes over, halting the further execution of the patrol activity  until the action is 
completed.  So, under the guidance of this activity, the robot turns to face the 180o 
direction, then moves forward 1000 mm, then turns to the 0o direction, then moves 
forward another 1000 mm.  The net effect is to move the robot back and forth between 
two points 1 meter apart. 

The enclosing while loop controls how many times the patrol motion is done.  The 
local variable a is a parameter to the activity; when the activity is invoked, for example 
with the call start patrol(4), this value is filled in with an integer.  On every 
iteration, the while condition checks whether a has been set to zero; if not, the variable 
is decremented and the loop continues.   (Note that, to make this an almost infinite loop, 
just invoke patrol with a negative argument.)  Using the variable a to keep track of 
the number of times the movement is done illustrates the capability of checking and 
setting internal variables, which can be very handy even for simple activities. 

The language of activities is based on ANSI C.  When an activity schema is defined, 
the keyword act signals the start of the schema.  The schema itself looks like a 
prototyped function definition in C.  Constructs such as local variables, iteration, and 
conditionals are all available.  In addition, there are forms that relate specifically to robot 
action.  In this case, the actions are primitive motions available to the robot: turning and 
moving forward.  When the activity schema is invoked, an activity executive interprets 
the statements in the schema according to a finite state semantics.  Basic actions cause 
the executive to wait at a finite state node until the action is completed (or some escape 
condition holds, such as a timeout).  So, while the activity schema looks like a standard 
C function, its underlying semantics is based on finite state automata for robot control.  
The user, who typically wants to sequence robot actions in the same way as he or she 
would sequence computer operations, can write control programs in a familiar operator 
language; the executive takes care of matching the activity schema statements to the 
finite state automaton semantics, so that the intended robot behavior is the result.  
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2.2 Surveillance Robot 
While sequencing basic actions is the typical evaluation mode, the language also 

supports concurrent execution, in which several activities working in parallel coordinate 
the robot’s actions.  Suppose we want to program the robot to patrol until it sees some 
object in front; then it should stop patrolling and approach the object.  To accomplish 
this task, we’ll set up two activities: the patrol activity of the previous example, and a 
supervisory activity that checks if there is something in front of the robot, and if so, 
approaches it. 

act approach() 
{ 
 int x; 

start patrol(-1) timeout 300 noblock; 
  checking: 
 if (timedout(patrol) || sfStalledMotor(sfLEFT))     
     fail; 
 x = ObjInFront(); 
 if (x > 2000) goto checking; 

suspend patrol; 
move(x - 200); 
succeed; 

} 

Figure 2-2  An activity that monitors another 

This activity starts off by invoking patrol with a negative argument, so it 
continues indefinitely.  However, instead of causing the approach to wait for its 
completion, the patrol activity is invoked with two special parameters.  The first, 
timeout 300, causes patrol to quit after 30 seconds (300 cycles) have elapsed.  
The second, noblock, allows the execution of approach to continue in parallel with 
patrol.  The former now goes into a monitoring loop, in which it checks for objects in 
front, for a motor stall, and for the state of the patrol activity.  If it determines that 
patrol has timed out, or if a motor stalls (indicating the robot ran into something 
immovable), then approach exits in a failure state.  The activity executive keeps 
track of the dependencies among activities; in this case, since approach called 
patrol, exiting approach automatically exits patrol.  Thus, if the motor stalls, 
all activity started by approach will be suspended. 

If, on the other hand, approach determines that there is an object less than 2 
meters in front (by calling the perceptual routine ObjInFront, which returns the 
distance to the nearest object), then it suspends the patrol activity, and moves to 
within 20 cm of the object.   The patrol activity must be suspended, otherwise the Move 
action will conflict with the actions being issued by patrol.  After the robot moves 
near the object, the approach activity exits with the success state. 

In this example, two activities execute concurrently, and coordination is achieved by 
signals that are sent between them. Activities can examine each others’ state, and take 
appropriate action.  As the monitoring activity, approach has the responsibility of 
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checking the state of patrol to see if it has timed out, and also checking for other 
conditions that would cause the suspension of patrol and the initiation of new 
behavior.  Finally, if approach is itself part of a larger activity, then by exiting with 
success or failure, it can signal other activities of its result. 

The use of a C-like language, together with a concurrent finite state semantics, 
makes it easy to write complex control routines in a few simple lines.  In the next 
sections we’ll examine the semantics of Colbert in more detail, and show how the 
executive interprets the Colbert language. 

3. Language and Semantics 
Finite state automata (FSAs) are an ubiquitous paradigm in computer science and 

electronics engineering.  FSAs are used to program logic chips, to design 
microprocessors, to run soda machines, and to reason about the computational 
complexity and decidability [Hor89].  They have also been the inspiration for several 
robot control languages, including the situated automata of Kaelbling and Rosenschein 
[Kae90], and the circuit semantics of ATLANTIS [Gat92].  We combine the basic 
structure of FSAs with ideas from concurrent systems to produce a semantics for 
Colbert. 

3.1 Finite State Automata 
A finite state automaton consists of: 

• sets S (states), I (inputs), and O (outputs) 

• a transition function  from states and inputs to states f s i s( , ) →

• an output function from states to outputs g s o( ) →

It’s convenient to represent FSAs using arcs and nodes: nodes are the states, and arcs 
are the transitions between states.  The arcs are labeled with the transition condition 
necessary for taking the arc to the next state, and states are tagged with their output 
function.  Figure 3-1 shows the FSA for the patrol activity defined in the previous 
section.  The transition function label is in boldface, the output label in italics. 
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Figure 3-1  The finite state automaton for patrol 

The first thing to note about the FSA is that its states don’t correspond exactly to the 
statements in the activity.  For example, the while statement has been translated into a 
set of nodes (start, done, c) which split the condition of the loop.  In general, conditional 
and looping statements in Colbert will translate to a set of nodes with conditional labels 
in the FSA. 

Actions at the nodes include primitive robot actions and internal state changes.  In 
pure FSAs, all state information is encoded in the states themselves.  For Colbert, the 
nodes represent only the state of the activity; other robot state information is handled 
separately (and more efficiently) as part of the Saphira perceptual space. 

In the activity schema, no wait conditions for primitive actions were given explicitly.  
In the FSA, these conditions are given as the conditions for transition to the next state.  
When an action command is issued, the FSA waits in the issuing state until the action is 
finished.  This default translation can be changed by the addition of the noblock and 
timeout parameters in Colbert. 

Note that the output function associated with a node is performed only once, when 
control first arrives at the node.  All self-transitions back to the node (which are not 
explicitly drawn in the figure) do not result in the output function being called again. 

The strength of the Colbert language lies in the ability to make an intuitive 
translation from operator constructs in C to FSAs capable of controlling the robot.  
FSAs can be tedious to program directly, because straightforward sequences and loops 
that are typical of most programs translate into lengthy sets of nodes and arcs with a 
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linear or looping structure.  Consider trying to write in C, where after each statement 
you have to say which statement to go to next!  In addition, common FSA constructs, 
like waiting for actions to finish, can be assumed implicitly as part of the semantics of  
Colbert, rather than written explicitly in the construction of the FSA. 

3.2 Colbert Statements 
Colbert statements are from one of four categories: 

1. Control actions 
2. Activity state tests 
3. Internal state actions 
4. Sequencing actions 

Table 3-1 lists the statements available in these categories.  We’ve already seen 
examples from each of the categories in the patrol and approach activities.  The 
sequencing and internal state actions comprise the standard C portion of the language.  C 
assignments and function calls have their normal interpretation, changing the state of 
internal C variables.  Sequencing actions, which include typical C iteration operators, 
are translated into a set of FSA states with appropriate branches, as in the while 
statement of the patrol activity. 

Control Actions Example Description 

    Primitive Action move(1000) timeout 30; Start a primitive action 

    start act start patrol noblock; Start an activity 

    <signal> act suspend patrol; Signal an activity 

   

Activity State Tests   

    <state>(act) sfGetTaskState(“patrol”) Test the state of an activity  

       

Internal State   
    C assignments 
    and functions 

x = ObjInFront()+10; Test or set the state of the 
database 

   

Sequencing Actions   

    goto goto start; Go to a state 

    while, if if (a == 0) 
 goto start;  

Iterative and conditional 
execution 

    waitfor waitfor(timedout(act) 
        ||a<0); 

Conditional suspension 

    wait <int> wait 30; Wait n cycles 

Table 3-1  Colbert statement summary 
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Control actions translate to a single FSA node for executing the action, and a 
transition based on the completion of the activity or action.  If noblock is asserted, then 
the transition is taken immediately; if a timeout is asserted, then there is an additional 
transition based on the timeout value. 

Control actions can also change the state of other activities, by sending them signals.  
Similarly, an activity can accept signals from other activities, changing the state of the 
underlying FSA. 

Activity state tests aren’t statements per se, but are expressions that can be used 
where C expressions are normally allowed.  They allow conditionals to check for the 
state of another activity. 

Finally, intentions can modify the state of their execution using various sequencing 
operators: goto, iteration, conditional, and suspension operators.   

3.3 Subactivities 
Colbert supports an execution model in which activities may be invoked as children 

of an executing activity.  This capability supports hierarchical task decomposition, an 
important method for robot control [Fir94, Ark90]. Consider the task of moving an 
object from one place to another (taken from [Fir96]).  It’s natural to decompose this 
into three subtasks: picking up the object, going to the destination, and dropping the 
object.  In Colbert, we would write the following activity.  

act move_object(int dest) 
{ 
 start pickup; 
 start goto(dest); 
 start drop; 
} 

Figure 3-2  An activity with subactivities 

The subactivities pickup, goto, and drop are executed in turn.  The 
move_object activity stops at each until it finishes, then goes on to the next.  This 
default execution model is the same as for primitive actions.  However, there are cases 
in which hierarchical decomposition is not the best way to accomplish a task; rather, it is 
useful to have several activities executing concurrently.  This behavior is typical with 
monitoring tasks, which can stretch over several subactivities.  Firby  [Fir96] gives the 
example of monitoring the robot’s gripper during the move_object activity.  If the 
robot drops the object, it should attempt to pick it up before continuing to the 
destination.  In Colbert, a monitoring activity can be started and run concurrently with 
the other subactivities, as in the surveillance example of Figure 2-2.  In the current 
example, we start a monitoring activity using the noblock option. 
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act move_object(int dest) 
{ 
 start monitor_hand noblock; 
 start pickup; 
 start goto(dest); 
 start drop; 
}  

Figure 3-3 Monitoring the move_object activity 

Figure 3-4 shows the execution structure of this activity.  The execution of the 
schema starts at a, and invokes the monitoring activity (which starts at node n).  At b the 
pickup subactivity is invoked, and the transition to node c doesn’t take place until the 
subactivity finishes.  During the execution of pickup, there are three concurrently 
executing activities: move_object, pickup, and monitor_hand.  When the toplevel 
activity move_object is exited, the Colbert executive automatically reaps any 
subprocesses, so the monitor_hand process is terminated. 

a b c

g

hd

e f

n

 
Figure 3-4  Activity execution structures 

This example is incomplete, because we haven’t shown how the monitoring process 
interacts with its siblings to achieve the task in the presence of carrying failures.  In the 
next section we look at the coordination mechanisms available to concurrent tasks. 

The hierarchical structure of activities is very much like the child process structure 
of Unix systems.  What distinguishes Colbert activities is the FSA nature of their 
semantics, which makes the coordination process more easily understandable and 
controllable.   

 

 

3.4 Concurrent Activities and Synchronization 
Often the task of robot control can be decomposed into a set of subtasks that are 

mostly independent, but require some form of coordination.  Colbert’s semantics 
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supports a set of concurrent activities that communicate indirectly through a global 
database, and directly by sending signals.  The FSA nature of activities is handy for 
communicating state information. 

Although an activity can be queried to see if it is in any given state, there are some 
predefined states typically used for signaling.  These are listed below in Table 3-2.  

State Meaning 

sfINIT Initial state of an activity 

sfSUCCESS 
sfFAILURE 

Termination states: activity succeeded or failed in its goal 

SfTIMEOUT Termination state: activity timed out 

sfSUSPEND Suspended state: the activity is not running 

sfINTERRUPT State for activities after an interrupt signal  

sfRESUME State for activities after a resume signal 

Table 3-2  Standard signals for activities 

When an activity is first started, it is set to the sfINIT state.  Typically this is the first 
statement of the activity, but an activity can specify a particular start position by using 
the onInit label.  For example, the following activity starts in the middle: 

act aa(int x) 
{ 
  loop: 
 if (x == 0) succeed; 
  oninit: 
 x = x-1; 
 goto loop; 
} 

If an activity falls through to the end, it is considered to have succeeded.  Otherwise, 
the activity can terminate itself and signal success or failure by using the special actions 
succeed and fail.  The activity can also suspend itself by using the suspend 
action.  In the suspended state, no further processing takes place until another activity 
sends a signal, usually the resume signal.   

Interruption and resumption are the normal way in which activities are requested to 
stop and start their processing, once invoked.  An interrupt signal causes an activity to 
go to the special oninterrupt label.  There, the activity should clean up anything 
that needs it, such as terminating current movement actions, and then suspend itself.  On 
resumption, the activity should re-establish any state it needs, then continue its 
processing.  Here is an example of making the patrol activity interruptable and 
resumable.  When patrol2 is interrupted, it first waits for any forward motion to be 
finished (sfDonePosition() returns 1 when any Move command is finished).  
Then it suspends itself.  This means that the robot finishes up at one of the patrol 
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endpoints.  On resumption, the counter is incremented, and the patrol continues.  Note 
that this is not a perfect solution, since the robot could have stopped at either point, and 
may resume by patrolling ahead of or behind its original path.  But it does illustrates the 
idea of interruptability. 

act patrol2(int a) 
{ 
  start: 
 while (a != 0) 
 { 
  a = a-1; 
  turnto(180); 
  move(1000); 
  turnto(0); 
  move(1000); 
 } 
 succeed; 
  oninterrupt: 
 waitfor (sfDonePosition()); 
 suspend; 
  onresume: 
 a = a+1; 
 goto start; 
} 

Figure 3-5  An activity that responds to interrupts 

Activities can also be coordinated with global variables, which are visible to all 
activities.  For example, the approach activity waits for a condition in which there is 
an object close by.  The function ObjInFront() could invoke a perceptual routine, or 
could just check the value of a variable that another activity was responsible for setting. 

One problem that all concurrent systems have is coordinating their accesses to global 
variables.  Several processes may attempt to change the same variable at the same time: 
for example, a process may be executing the statement x=x+1, while another is 
changing x.  The result may not be to increment x.  The same coordination problem 
exists with signals: one process may attempt to interrupt another when it is executing a 
statement, and the statement may not be fully executed, leaving the process in an 
indeterminate state. 

In typical concurrent systems, there are coordination mechanisms for dealing with 
these problems: critical sections, mutexes, and the like.  In Colbert, the FSA semantics 
provides a natural coordination mechanism.  Activity transitions are executed 
synchronously, and signaling takes place when all activities are settled at an FSA node.  
Synchronous behavior is enforced by the execution model, explained in the next section. 

Let’s return to the move_object example (Figure 3-3) and add coordination 
signals to the activities.  A partial listing is shown in Figure 3-6.  As before, the 
monitor_hand activity is started in nonblocking mode, and immediately sent the 
suspend signal so that it isn’t active until pickup actually grasps the object, at which 
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point it is sent the resume signal.  Now monitoring is active throughout the robot’s 
activities, until during drop it gets sent a suspend signal. 

act move_object(int dest) 
{ 
 start monitor_hand noblock suspend; 
  restart: 
 start pickup; 
 start goto(dest); 
 start drop; 

succeed; 
  oninterrupt: 
 suspend monitor_hand; 
 goto restart; 
}  
 
act pickup 
{ 
 gripper down; 
 gripper grasp; 
 resume monitor_hand; 
 gripper up; 
} 
 
act drop 
{ 
 suspend monitor_hand; 

gripper ungrasp; 
 gripper down; 
} 

Figure 3-6 Signaling in the move_object activity 

Note that there is no special processing needed for simple failure recovery.  If 
monitor_hand detects a gripper failure, it just sends an interrupt signal to 
move_object.  Since all children of move_object will also see this signal, 
whatever subactivity is occurring will also be interrupted.  On interrupt, move_object 
resumes by again trying to grasp the object and continue to its drop-off point. 

In this example, it was possible to refer to executing activities using their schema 
names.  In more complicated cases, the same schematic activity may be invoked several 
times, giving rise to an ambiguous reference in signaling.  Colbert allows an activity to 
be given an instance name when it is invoked.  In this way, multiple invocations of the 
same schema can be kept separate for signaling purposes.  This is not a very 
sophisticated scheme, however.  A more useful but still simple method would be to 
allow activity instances to be members of user-defined classes, e.g., a monitor class, or 
even a monitor_gripper class.  The user could create classes and subclasses as needed, 
and signal an activity based on its name, its name and class, or just its class. 
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4. Colbert Executive  
In this section we describe how the Colbert executive implements the FSA semantics 

of activities.  To start an activity schema, it must be invoked with the start 
command, which puts an instance of the schema onto Colbert’s structured list of 
activities.  The Colbert executive has the job of cycling through the activities and 
executing them incrementally, giving an operational meaning to the underlying FSA 
semantics. 

4.1 Synchronous FSA Cycle 
One of the problems faced in implementing the executive is that it must work the 

same on a number of different OS platforms (MS Windows and different flavors of 
Unix), all of which have different support for concurrent activity.  Another problem is 
that a Saphira client can have tens or even hundreds of activities executing concurrently, 
so the overhead of servicing them must be low.  This rules out expensive OS 
implementations such as separate processes or even threads.  Instead, we take advantage 
of the discrete nature of the FSA to update activities in a round-robin fashion.  The 
executive uses a native timer mechanism to schedule an interrupt every 100 
milliseconds, which is its basic cycle time.  The cycle time is short enough to ensure 
timely response to new conditions, while being long enough not to load current 
processors excessively.   

Within this cycle, every executing activity will progress through at least one state of 
its underlying FSA.  The executive cycles through the activity list, and for each activity, 
it evaluates statements until it reaches a halting condition based on the FSA semantics. 

The halting conditions depends on the state of the activity.  One of several things 
may happen. 

1.  If the current state is waiting for a condition to occur, and that condition is not 
satisfied, the activity stays in the state and returns.  Typically, waiting conditions 
are issued explicitly with the waitfor command, or implicitly by primitive 
actions or activity calls. 

2.  If the current state is not waiting, then the current statement is evaluated.  
Depending on the statement, the executive may halt evaluation and move on to 
the next activity, or it may continue to evaluate successive statements. 

Statements which cause an execution break are: 
• goto 
• the last statement in a while body 
• the condition of a while statement being false 
• waitfor  
• start 
• any signaling action 
• any primitive action  
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These halting conditions are meant to make ordinary C operations efficient, since 
they can execute sequentially without causing a break.  For example, the following 
sequence of statements will not cause a break until either the succeed or goto 
statement is executed. 

 if (x == 0) succeed; 
  oninit: 
 x = x-1; 
 goto loop; 

By forcing multiple statements to be evaluated in a single execution cycle, the 
executive preserves the efficiency of sequential execution, while still allowing an 
activity to break at critical junctures.  When the executive has finished with an activity’s 
evaluation cycle, the activity is at an FSA node, with all output functions having been 
executed.  

Because each activity is executed in turn, and execution always finishes at an FSA 
node, all activities are executed synchronously (and sequentially).  Thus, there is no 
problem of race conditions or competing update among concurrent processes.  However, 
because activities are executed sequentially rather than concurrently, there can be order-
dependent phenomena that are unexpected.  For example, to propagate a signal 
sequentially through 4 activities could take 1, 2, 3 or 4 cycles, depending on the 
execution order of the activities within the cycle. 

4.2 Executive Structure 
Figure 4-1 shows the structure of the Colbert executive. The main data structure, the 

activity list, is a structured collection of current activities.  One way to think of these 
activities is as a set of threads in an operating system.  Each of the threads is a separate 
execution module, and all threads share global variables.  In addition, there is a 
hierarchical structure among the threads. 

 The basic cycle is for the executive to look at each activity in the activity list, check 
to see if its state can change,  invoke the requested actions, and update the state.  All of 
this happens within the 100ms basic cycle time, so the response to new conditions is 
relatively quick.   

For each activity, the executive checks if it is in a waiting or suspended state; if so, it 
bypasses execution of this activity.  If not, it evaluates the activity until its next halting 
condition, as described in the previous section.  In addition, it checks for a timeout 
condition, and suspends an activity or cancels an action if it exceeds its limit. 

An executed action can result in a signal being sent, or a new activity or action being 
invoked.  The executive handles these by issuing the appropriate commands. For activity 
invocation, the executive looks up the activity schema in its library, instantiates any 
arguments, and adds the activity to the activity list.  In the blocking case, the executive 
is responsible for checking the blocking and timeout conditions of the subactivity, and 
resuming the calling activity when appropriate.   In the non-blocking case, the executive 
starts the subactivity as a concurrent activity, and maintains the link to its parent.  If the 
parent is signaled (for example, with an interrupt or resume signal), then the appropriate 
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signal is also passed down to the child.  The executive also handles requests from other 
Saphira processes for activity invocation or signaling. 

Activities

Invocations
and signals

Activity Library

Internal Database

Program
Requests

Sensor
Interpretation

Primitive
Actions

 

Figure 4-1  Major components of the Colbert executive 

  In Colbert, there is only one way in which an activity can be invoked, by calling it 
directly with its arguments.  In PRS-Lite, more advanced automatic invocation of 
activities is possible, through the use of a database of goals and facts [Geo89].  In this 
mode, environmental conditions or the posting of a goal can trigger the invocation of an 
activity.  It would not be difficult to add this capability to Colbert, and we intend to do 
so in the future. 

When an activity finishes, either explicitly by signaling its success or fail state, or 
implicitly by falling through its last FSA node, all its children are sent suspend 
signals by the executive.  Thus, an activity that finishes has no executing subactivities: 
the executive enforces the hierarchical nature of subactivities. 

4.3 Implementation 
The Colbert executive is implemented in C and requires only the services of a 100 

ms interrupt.  It uses global and local data structures to store activity closures (activities 
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with their variable bindings).  Compiled activities use C’s native variable storage, so 
variable access is very fast.  For either compiled or evaluated activities, the context 
switch between activities is also very fast.  On typical processors (100 MHz Pentium) 
we have measured times on the order of 10 µs.  A typical Saphira client will have some 
40 compiled activities and 10 interpreted activities running concurrently, all executing 
within the 100 ms basic cycle.  In the normal case these activities use only a small 
fraction of available CPU resources, on the order of 5% for a 100 MHz Pentium, and 
less for more powerful processors such as those in current Sparcstations or SGI 
machines. 

The complete Colbert executive has a very small footprint.  Although it was not 
originally intended to run on embedded systems with limited memory, there is no reason 
it could not do so.   

The compilation of activities takes place in two phases: first, an activity is translated 
into a C function that implements its underlying FSA, and then the C function is 
compiled.  The translation is relatively straightforward: turning iterations into looping 
FSA structures, conditionals into branching structures, and so forth.  One interesting 
aspect of the translation is that a static analysis can determine the execution halting 
points, which can then be incorporated directly into the C procedure.  When the 
executive invokes the procedure, it returns exactly at such a halting point. 

Evaluation of activities is more difficult.   An activity schema, in text form, is parsed 
using a YACC front-end and converted into an internal form suitable for evaluation.  
The parser must recognize a subset of ANSI C expressions and statements; this subset 
has been simplified to remove complex typing and few other constructs.  At this stage all 
conversion of textual variables to internal pointers is done, as well as linking to internal 
C functions and variables of Saphira.  There are also some translations to turn iteration 
constructs into a form that more closely resembles their FSA semantics, as in 
compilation.  The internal form of activities is interpreted by the Colbert evaluator when 
an activity is invoked.   

Because the evaluator is written in YACC, the evaluator itself is a portable C 
program.  We have implemented it on all the systems that Saphira runs on.  The parser 
program can be large, and may not be suitable for an embedded processor, but we have 
not yet made any experiments to determine if this is so. 

The Colbert evaluator is available to the user at runtime, for examining the state of 
the system, and for invoking activities and sending them signals from the command line.  
All Saphira internal variables and functions are available to the evaluator, as well as any 
user-defined compiled C functions that are dynamically loaded into the system at 
runtime.  The Colbert executive catches any system errors and suspends the responsible 
activity, so the user can examine its state and determine the problem.  The evaluator 
makes an effective debugging tool that is portable across all implementations of the 
Colbert executive.  It is also interesting to be able to define and evaluate C functions 
interactively, something dear to the heart of every LISP programmer.  
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5. Other Control Languages 
There are a large number of languages and systems for robot control, and in this 

section we look at a few that are directly relevant to Colbert, especially with regard to 
the issue of language design for user programming. 

5.1 PRS-Lite 
The immediate predecessor of Colbert is the PRS-Lite executive [Mye96], a reactive 

controller based loosely on the Procedural Reasoning System [Geo89].  PRS-Lite shares 
many of the same ideas as Colbert, including a finite state semantics, and concurrent 
activities.  But Colbert differs in some important respects.  First, it extends the 
coordination component of PRS-Lite to include a hierarchical organization among the 
activities, and a signaling system for interruption, suspension, and resumption.  Second, 
where PRS-Lite takes FSAs as the language of activities, Colbert uses C as its language, 
with FSAs as the underlying semantics.  While this might not seem like a large 
difference, conceptually it makes robot control programs much easier to understand and 
write, especially for programmers used to sequential, conditional, and iterative 
constructs.  Finally, Colbert offers an activity (and C) evaluator, which was not available 
under PRS-Lite.  Interestingly, the full version of PRS, written in LISP, has a graphical 
and textual language for activities that support the same kind of interactivity as Colbert 
[Wil95].  But again the language is based on FSAs, and it might be useful to import the 
Colbert language into PRS as a compact way of specifying activities in that system. 

5.2 RAP 
RAP [Fir94, Fir96] is a reactive plan execution system that shares many features 

with PRS and PRS-Lite.  A primary emphasis of the RAP system is on modularity and 
reusability of activity schemas.  A RAP method (which corresponds to an activity 
schema) is a parameterized FSA schema for accomplishing a goal using a sequence of 
behaviors and other RAPs.  The RAP executive manages a hierarchical tree of RAPs, 
decomposing more difficult tasks into sequences of subtasks.  The RAP system also has 
a facility for concurrent execution of RAPs, along with a signaling system. 

RAPs are defined using LISP data structures.  There is a limited form of 
conditionalization, but no iteration operators.  Subtasks can be specified as operating in 
sequence or in parallel; the parallel operator is especially nice for spawning several 
subtasks that must all complete before continuing.  Because it is defined in LISP, the 
RAP system has LISP’s interactive facilities available for debugging and program 
development. 

5.3 L 
L is a commercial language for robot control based on LISP [Bro95].  It is a 

remarkable language, in that it can run a LISP system in an embedded system with 10 
KB of memory, complete with garbage collector.  To do so, it makes a number of 
simplifications of  the LISP language.  But L also implements a new multithreading 
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facility, to support concurrent execution of multiple threads of execution.  And on top of 
this it defines a set of macros, called MARS, that facilitate interthread coordination. 

Because it is a LISP, L lets users examine the executing system for debugging.  In a 
typical configuration, however, L’s executive, VENUS, does not include either an 
evaluator or a compiler, so new or updated programs must be compiled externally and 
downloaded to the running system.  This limitation stems from the use of L in embedded 
systems with very limited memory; it is conceivable that Colbert could also fit into such 
systems, but would have to forego the full evaluator with its large parsing program. 

Colbert and L, despite their language differences, actually take a similar approach to 
the robot control problem.  Like Colbert, L’s multiprocess scheme relies on each process 
being interruptable at a fine-grained level; in the case of L, it’s at every procedure call.  
And they both define a signaling system for interprocess communication.  But Colbert 
differs in using FSAs as its underlying semantics, in having a hierarchical structure for 
activities, and in providing support for typical invocations of robot actions.  It also 
appears to be more efficient than L in its multiprocess implementation, since switching 
threads in L can be expensive. 

5.4 MissionLab 
MissionLab is a toolset that implements the Societal Agent theory [Mac97].  

According to this theory, robot control (including multirobot control) is accomplished 
by recursive assemblages of behaviors.  Temporal sequencing of behaviors is provided 
by a FSA semantics and language.  Like PRS’ Act editor, MissionLab provides a 
graphical interface with which the user can construct and debug FSAs.  One of the 
interesting aspects of MissionLab is that assemblages are defined independent of any 
particular robot architecture.  When an architecture is specified (e.g., SAUSAGES or 
AuRA [Ark90]), MissionLab generates concurrent procedures for implementing  the 
FSAs using the action methods of the architecture. 

MissionLab’s strengths are the graphical user interface, the ability to bind to 
different robot control architectures, and the ability to specify an interaction mode for 
behaviors: cooperative, competitive, sequential.  The use of  recursive assemblages of 
behaviors is similar to the hierarchical structure of activities in Colbert.   

5.5 GOLOG 
GOLOG is a language for robot control based on the situation calculus [Lev96].  It is 

unique in robot control languages in having a logic-based semantics.  In fact, GOLOG 
programs look a lot like Prolog programs with added procedural operators, and are 
interpreted in the same way: by a theorem prover.  For example, here are two GOLOG 
procedures for an elevator control program: 
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proc control  
   [while (∃n)on(n) do serve_a_floor endWhile];  
   park  
endProc 
 
proc park  
   if current_floor=0 then open  
   else down(0); open 
   endIf 
endProc 

Evaluating these procedures, in the presence of initial conditions for the elevator 
(and some other axioms about actions such as down) produces a sequence of primitive 
actions that can be executed by the elevator controller.  Given the truth of the axioms, 
the sequence is guaranteed to fulfill the conditions of the procedures. 

While the GOLOG language uses iterative and conditional constructs similar to 
those of Colbert, it is much more expressive.  For example, there is quantification (∃n) 
as well as nondeterministic choice.  GOLOG programs can be very compact 
specifications of complex controllers.  While theorem proving can be expensive, it takes 
place offline, generating a executable sequence to be used by a reactive controller. 

GOLOG is an interesting experiment in high-level description for robot control.  
However, it remains to be seen if the rather complicated situation calculus semantics 
will be suitable for real world controllers.  Recently, GOLOG has been extended to deal 
with prioritized, concurrent programs, as well as exogenous events (those not under the 
control of the robot) [Lev97].  

6. Conclusion 
The design criteria for Colbert are: 

1.  To have a simple language with standard iterative, sequential and conditional 
constructs. 

2.  To have a clear and understandable semantics based on FSAs. 

3.  To have a debugging environment in which the user can check the state of the 
system and redefine Colbert activities. 

4.  To have an small, fast, and portable executive. 

The current implementation of Colbert fulfills these objectives.  Whether Colbert 
will be successful as a robot control language remains to be seen.  Currently it is only 
available as part of a larger robot architecture, Saphira, and so is limited to that user 
community.  But it should be possible to adjoin Colbert to other architectures, where it 
would function as the sequential controller for the system.  Given that Colbert programs 
are compact and easily transferred, we hope to build up a library of useful routines that 
can be shared in the user community. 
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