Universita degli Studi di Brescia
Facolta di Ingegneria
Dipartimento di Elettronica per
I'Automazione

Behaviours

Ing. Fabio Tampalini

Fontl

® Sono presenti numerosi documenti nella pagina del
corso di robotica.




Behavioural Control

® Behavioural actions are implemented in Aria.

® The smaller unit of behaviour is called an action.

e Behavioural actions can the same types of control
values as direct actions: traslation velocity and
position, and rotational velocity and heading. But,
since the outputs are meant to be combined, it is
Important that the current set of executing actions
use the same control on each of the channels.

® Konolige recommends using translational velocity
and rotational heading as the standard action
outputs for most uses.

The Action Evaluation Cycle

e The set of currently active actions is held on a list
in the robot object SFROBOT.

e On every cycle (100ms), each action object is
evaluated to produce a translational and rotational
output, along with a strength for each.

® The strength, which varie from 0 to 1, indicates
how strongly the action prefers to have this motion
executed.

e The output values for behavioural actions are
described by a structure, ArActionDesired.

e There are many possible types of resolution
strategies: averaging, winner-take-all, competition,
etc.




The Behavioural Action SfMovitAction

e Now we'll examine a behavioural action in detail.

® The porpose of this action is to turn the robot to a
given heading, and move it forward a given
distance.

class StMovitAction : pub
1
public:

ion{int distance, 1

Action(char *name, bool instance)

tance = distance;
g = heading;

e Note the constructor chaining performed by calling
ArAction(““Movit”) in the prolog of the
constructor.




The Action Body (1)

® The action body is defined by the fire() function.

e This function is called on every cycle that the
action is active, and is responsable for determing
the output of the action.

e Remember that this action is supposed to move
the robot forward by its first argument, and turn it
to the heading given by its second argument.

The Action Body (2)

e Once the desired distance has been traveled, the
action deactivates itself.

e Deactivation has two effects: first, it frees up the
action executive from having to process the fire()
function any more; second, it communicates to
Saphira and Colbert that the action has completed.

® [f there are other activities that are waiting for the
action to complete, they can then proceed.

e [f an action does not want to control the movement
of the robot, it can return a NULL pointer insted of
the ArActionDesired pointer; this is done when
the action finishes.




Interfacing the Action to Saphira/Colbert (1)

e There are two parts to creating the Saphira and
Colbert interface to an action. First, the invoke()
function must be define statically, and serves as a
function that can be called from Colbert, just as
other functions made available with sfAddEvalFn.

e Invoke() takes arguments that are Colbert types

(int, floats, and void * types), and return an istance
of the action.

ion::invoke(int distance, int heading)

return new SfMovitAction(distance, heading);

}

Interfacing the Action to Saphira/Colbert (2)

e In the file defining the action, we can add code to
be executed when the file is loaded into Saphira,
using then function sfLoadlnit.

e Here is how it's done for AfMovitAction:

SFEXPORT wvoid
sflLoadInit ()

sfAddEvaladction ("Movit", (veid *)S5fMovitAction::invoke, 2, sfINT, sfINT};

}




Invoking the Action (1)

e Once the action is defined and added to Saphira
and Colbert, it can be invoked from Colbert using
the start command, just like a Colbert activity.

® To start up the action, just use

start Movit (1000

which will start up the action with a distance
argument of 1000 and a heading argument of 95.

e An example of invoking the Movit action from
Colbert is given in the tutor/movit/init.act file, as
the activity movit_act.

rit (dist, 90) priority 10;
// get rid of the action
'/ stop the robot

Invoking the Action (2)

e From C++ programs, the action can be invoked by
using the corresponding sfStartTask() function.
For example, here a tipycal invocation:

sfStartTask (“"Movit”™, NULL

e Here the second argument is the instance name;
the default NULL means it will be the same as the
schema name. Timeout, priority, and suspension
arguments are required, followed by the action
parameters.




Turning Behavioural Action On

® Behavioural actions and direct actions can conflict
If they are invoked at the same time.

® In situation like this, the direct actions always take
priority.

e \WWhile the robot is executing direct actions, it turns
off the output of behavioural actions.

e In fact, whenever a direct action is executed,
behavioural actions remain off untill they are
explicitly turned back on.

® To turn bahavioural actions on, use the behaviors
command in Colbert, or the longer C++ function:

SfROBOT->clearDirectMotion()

FINE




