A Javadoc Primer

Prepared by Jeff Hunter, Sr. DBA 03-SEP-2002
Overview

Traditionally, when you write a program you must write a separate document recording how the
program works. When the program changes, the separate documentation must change as well. For
large programs that are constantly being changed and improved, it is a tedious and error-prone task to
keep the documentation consistent with the actual code.

Javadoc is a tool from Sun Microsystems for generating API documentation in HTML format from
what are known as doc comments in the source code. Javadoc will describe (by default) all public and
protected classes, nested classes (but not anonymous inner classes), interfaces, constructors, methods,
and fields.

This article provides a brief overview of the Javadoc tool, common conventions as well as several
common examples.

Description

You can run the Javadoc tool on entire packages, individual source files, or both. In the first case, you
pass in as an argument to javadoc a series of package names. In the second case you pass in a series of
source “. java” filenames. Examples are given at the end of this document.

Javadoc can only be run on source files and packages. Once you have run Javadoc and want to view
the generated HTML, the topmost page is named packages.html (in Javadoc 1.1) or
index.html (in Javadoc 1.2 and later).

NOTE - When you pass in package names to the Javadoc tool, it currently processes all “. java”
classes in the specified package directories, even if the “. java” files are code examples or other
classes that are not actually members of the specified packages. It does not parse each “. java” file
for a package declaration. Sun may add this parsing in a future release.

The Javadoc tool is included in the Java Development Kits. The only way to obtain the Javadoc tool is
by downloading the relevant JDK or SDK.

The Javadoc tool produces one complete document set each time it is run; it cannot do incremental
builds -- that is, it cannot modify or directly incorporate results from previous runs of the Javadoc tool.
However, it can link to results from other runs.

As implemented, the Javadoc tool requires and relies on the java compiler to do its job. The Javadoc
tool calls part of javac to compile the declarations, ignoring the member implementation. It builds a
rich internal representation of the classes, including the class hierarchy and using its relationships, then
generates the HTML from that. The Javadoc tool also picks up specially formatted, user-supplied
documentation (often called doc comments) in the source code.

In fact, the Javadoc tool will run on “. java” source files that are pure stub files with no method
bodies. This means you can write documentation comments and run the Javadoc tool in the earliest
stages of design while creating the API, before writing the implementation.

Terminology

API documentation (API docs) or API specifications (4PI specs)

On-line or hardcopy descriptions of the API, intended primarily for programmers writing in Java.
These can be generated using the javadoc tool or created some other way. An API specification is a
particular kind of API document, as described above. An example of an API specification is the on-line
Java 2 Platform, Standard Edition API Specifications. An example of an API document is the Java
Class Libraries book by Chan/Lee.

Documentation comments (doc comments)

The special comments in the Java source code that is delimited by the /** ... */ delimiters. These
comments are processed by the javadoc tool to generate the API docs.

javadoc

The JDK tool that generates API documentation from doc comments.
Source files

The javadoc tool can generate output (usually HTML files) originating from four different types of
“source” files:

e Source code files for Java classes (. java) - these contain class, interface, field, constructor
and method comments.

e Package comment files (package.html) - these contain package comments

e Overview comment files (overview.html) - these contain comments about the set of
packages

e Miscellaneous unprocessed files - these include images, sample source code, class files,
applets, HTML files, and whatever else you might want to reference from the previous files.

Javadoc Source Files
The javadoc tool will generate output originating from four different types of “source” files: Java
language source files for classes (. java), Package comment files, Overview comment files, and

Miscellaneous Unprocessed files.

Class Source Code Files

Each class or interface and its members can have their own documentation comments, contained in a
.Java file.

Package Comment Files

Each package can have its own documentation comment, contained in its own “source” file, which the
javadoc tool will merge into the package summary page that it generates. You typically include in
this comment any documentation that applies to the entire package.

To create a package comment file, you must name it package . html and place it in the package
directory in the source tree along with the . java files. The javadoc tool will automatically look for
this filename in this location. Notice that the filename is identical for all packages.

The content of the package comment file is one big documentation comment, written in HTML, like all
other comments, with one exception: The documentation comment should not include the comment
separators /** and */ or leading asterisks. When writing the comment, you should make the first
sentence a summary about the package, and not put a title or any other text between <body> and the
first sentence.

You can include package tags; as with any documentation comment, all tags except { @1ink} must
appear after the description. If you add a @see tag in a package comment file, it must have a fully
qualified name.

When the javadoc tool runs, it will automatically look for this file; if found, the javadoc tool does the
following:

v Copies all content between <body> and </body> tags for processing.

v" Processes any package tags that are present.

v' Inserts the processed text at the bottom of the package summary page it generates, as shown
in “Package Summary”.

v Copies the first sentence of the package comment to the top of the “Package Summary” page.
It also adds the package name and this first sentence to the list of packages on the overview
page, as shown in “Overview Summary”. The end-of-sentence is determined by the same
rules used for the end of the first sentence of class and member descriptions.

Overview Comment File

Each application or set of packages that you are documenting can have its own overview
documentation comment, kept in its own “source” file, which the javadoc tool will merge into the
overview page that it generates. You typically include in this comment any documentation that applies
to the entire application or set of packages.

To create an overview comment file, you can name the file anything you want, typically
overview.html and place it anywhere, typically at the top level of the source tree. Notice you can
have multiple overview comment files for the same set of source files, in case you want to run javadoc
multiple times on different sets of packages.

For example, if the source files for the java.applet package are contained in
C:\user\src\java\lapplet directory, you could create an overview comment file at
C:\user\src\overview.html.

The content of the overview comment file is one big documentation comment, written in HTML, like
the package comment file described previously. To re-iterate, when writing the comment, you should
make the first sentence a summary about the application or set of packages, and not put a title or any
other text between <body> and the first sentence. You can include overview tags; as with any
documentation comment, all tags except in-line tags, such as {@1ink}, must appear after the
description. If you add a @see tag, it must have a fully qualified name.

When you run the javadoc tool, you specify the overview comment file name with the -overview
option. The file is then processed similar to that of a package comment file.

v Copies all content between <body> and </body> tags for processing.

v" Processes any overview tags that are present.

v' Inserts the processed text at the bottom of the overview page it generates, as shown in
Overview Summary.

v Copies the first sentence of the overview comment to the top of the overview summary page.

Miscellaneous Unprocessed Files

You can also include in your source any miscellaneous files that you want the Javadoc tool to copy to
the destination directory. These typically includes graphic files, example Java source (. java) and
class (. class) files, and self-standing HTML files whose content would overwhelm the
documentation comment of a normal Java source file.

To include unprocessed files, put them in a directory called doc-files, which can be a subdirectory
of any package directory that contains source files. You can have one such subdirectory for each
package. You might include images, example code, source files, class files, applets and HTML files.

For example, if you want to include the image of a button button.gif inthe java.awt.Button
class documentation, you place that file in the /home /user/src/java/awt/doc-files/
directory. Notice the doc—files directory should not be located at

/home/user/src/java/doc—files because java is not a package — that is, it does not
directly contain any source files.

All links to these unprocessed files must be hard-coded, because the javadoc tool does not look at the
files — it simply copies the directory and all its contents to the destination. For example, the link in the
Button. java doc comment might look like:

/*k*k

* This button looks like this:

*
*/

Generated Files

By default, javadoc uses a standard doclet that generates HTML-formatted documentation. This doclet
generates the following kinds of files (where each HTML “page” corresponds to a separate file). Note
that javadoc generates files with two types of names: those named after classes/interfaces, and those
that are not (such as package-summary.html). Files in the latter group contain hyphens to
prevent filename conflicts with those in the former group.

Basic Content Pages

e One class or interface page (classname.html) for each class or interface it is
documenting.

e One package page (package-summary.html) for each package it is documenting. The
Jjavadoc tool will include any HTML text provided in a file named package .html in the
package directory of the source tree.

e One overview page (overview-summary.html) for the entire set of packages. This is
the front page of the generated document. The javadoc tool will include any HTML text
provided in a file specified with the -overview option. Note that this file is created only if you
pass into javadoc two or more package names. For further explanation, see HTML Frames.)

Cross-Reference Pages

e One class hierarchy page for the entire set of packages (overview-tree.html). To
view this, click on "Overview" in the navigation bar, and then click on “Tree”.

e One class hierarchy page for each package (package-tree.html) To view this, goto a
particular package, class or interface page; click “Tree” to display the hierarchy for that
package.

e One “use” page for each package (package-use.html) and a separate one for each class
and interface (class-use/classname.html). This page describes what packages,
classes, methods, constructors and fields use any part of the given class, interface or package.
Given a class or interface A, its “use” page includes subclasses of A, fields declared as A,
methods that return A, and methods and constructors with parameters of type A. You can
access this page by first going to the package, class or interface, then clicking on the “Use”
link in the navigation bar.

e A deprecated API page (deprecated-1ist.html) listing all deprecated names. (A
deprecated name is not recommended for use, generally due to improvements, and a
replacement name is usually given. Deprecated APIs may be removed in future
implementations.)

e A constant field values page (constant-values.html) for the values of static fields.

e A serialized form page (serialized-form.html) for information about serializable
and externalizable classes. Each such class has a description of its serialization fields and
methods. This information is of interest to re-implementors, not to developers using the API.
While there is no link in the navigation bar, you can get to this information by going to any
serialized class and clicking “Serialized Form” in the “See also” section of the class
description. The standard doclet automatically generates a serialized form page: any class
(public or non-public) that implements Serializable is included, along with readObject and

writeObject methods, the fields that are serialized, and the doc comments from the @serial,
@serialField, and @serialData tags. Public serializable classes can be excluded by
marking them (or their package) with @serial exclude, and package-private serializable
classes can be included by marking them (or their package) with @serial include. As of
1.4, you can generate the complete serialized form for public and private classes by running
javadoc without specifying the -private option.

e Anindex (index-*.html) of all class, interface, constructor, field and method names,
alphabetically arranged. This is internationalized for Unicode and can be generated as a single
file or as a separate file for each starting character (such as A-Z for English).

Support Files

e A help page (help-doc.html) that describes the navigation bar and the above pages. You
can provide your own custom help file to override the default using -helpfile.

e One index.html file that creates the HTML frames for display. This is the file you load to
display the front page with frames. This file itself contains no text content.

e Several frame files (*—frame.html) containing lists of packages, classes and interfaces,
used when HTML frames are being displayed.

e A package list file (package-1ist), used by the -link and -linkoffline options. This is a
text file, not HTML, and is not reachable through any links.

o A style sheet file (stylesheet. css) that controls a limited amount of color, font family,
font size, font style and positioning on the generated pages.

e A doc-files directory that holds any image, example, source code or other files that you want
copied to the destination directory. These files are not processed by the javadoc tool in any
manner — that is, any javadoc tags in them will be ignored. This directory is not generated
unless it exists in the source tree.

HTML Frames

The javadoc tool will generate either two or three HTML frames, as shown in the figure below. When
you pass source files (* . Java) or a single package name as arguments into the javadoc command, it
will create only one frame (C) in the left-hand column -- the list of classes. When you pass into
javadoc two or more package names, it creates a third frame (P) listing all packages, as well as an
overview page (Detail). This overview page has the filename overview-summary.html. Thus,
this file is created only if you pass in two or more package names. You can bypass frames by clicking
on the “No Frames” link or entering at overview-summary.html.

If you are unfamiliar with HTML frames, you should be aware that frames can have focus for printing

and scrolling. To give a frame focus, click on it. Then on many browsers the arrow keys and page keys
will scroll that frame, and the print menu command will print it.

javadoc *.java javadoc java.lang java.awt

Load one of the following two files as the starting page depending on whether you want HTML frames
or not:

v index.html (for frames)
v overview-summary.html (for no frames)

Generated File Structure

The generated class and interface files are organized in the same directory hierarchy that Java source
files and class files are organized. This structure is one directory per subpackage.

For example, the document generated for the class java.applet. Applet class would be located at
java\applet\Applet.html. The file structure for the java.applet package follows, given that the
destination directory is named apidocs. All files that contain the word "frame" appear in the upper-left
or lower-left frames, as noted. All other HTML files appear in the right-hand frame.

NOTE - Directories are shown in bold. The asterisks (*) indicate the files and directories that are
omitted when the arguments to javadoc are source filenames (*.java) rather than package names. Also
when arguments are source filenames, package-list is created but is empty. The doc-files directory will
not be created in the destination unless it exists in the source tree.

apidocs

*

index.html
overview-summary.html
overview-tree.html
deprecated-list.html
constant-values.html
serialized-form.html
overview-frame.html
allclasses-frame.html

help-doc.html
index-all.html
index-files
index-<number>.html
package-list

stylesheet.css

java
applet
Applet.html
AppletContext.html
AppletStub.html
AudioClip.html
* package-summary.html

* package-frame.html

* package-tree.html
package-use
doc-files
class-use
Applet.html
AppletContext.html
AppletStub.html
AudioClip.html
src-html
java
applet
Applet.html
AppletContext.html
AppletStub.html
AudioClip.html

Generated API Declarations

Top directory

Initial page that sets up HTML frames

Lists all packages with first sentence summaries
Lists class hierarchy for all packages

Lists deprecated API for all packages

Lists values of static fields for all packages
Lists serialized form for all packages

Lists all packages, used in upper-left frame

Lists all classes for all packages, used in lower-
left frame

Lists user help for how these pages are organized
Default index created without -splitindex option
Directory created with -splitindex option

Index files created with -splitindex option

Lists package names, used only for resolving
external refs

HTML style sheet for defining fonts,
positions

Package directory

Subpackage directory

Page for Applet class

Page for AppletContext interface
Page for AppletStub interface

Page for AudioClip interface

Lists classes with first sentence summaries for
this package

Lists classes in this package,
hand frame

Lists class hierarchy for this package
Lists where this package is used
Directory holding image and example files
Directory holding pages API is used

Page for uses of Applet class

Page for uses of AppletContext interface
Page for uses of AppletStub interface
Page for uses of AudioClip interface
Source code directory

Package directory

Subpackage directory

Page for Applet source code

Page for AppletContext source code

Page for AppletStub source code

Page for AudioClip source code

colors and

used in lower left-

The Javadoc tool generates a declaration at the start of each class, interface, field, constructor, and
method description. This declaration is the declaration for that API item. For example, the declaration
for the Boolean class is:

public final class Boolean
extends Object
implements Serializable

and the declaration for the Boolean.valueOfmethod is:

public static Boolean valueOf (String s)

The javadoc tool can include the modifiers public, protected, private, abstract, final, static, transient,
and volatile, but not synchronized or native. These last two modifiers are considered implementation
detail and not part of the API specification.

Rather than relying on the keyword synchronized, APIs should document their concurrency
semantics in the comment description, as in “a single Enumeration cannot be used by multiple threads
concurrently”. The document should not describe how to achieve these semantics. As another example,
while Hashtable should be thread-safe, there's no reason to specify that we achieve this by
synchronizing all of its exported methods. We should reserve the right to synchronize internally at the
bucket level, thus offering higher concurrency.

Java Doclets

You can customize the content and format of the Javadoc tool's output by using doclets. The Javadoc
tool has a default "built-in" doclet, called the standard doclet, that generates HTML-formatted API
documentation. You can modify or subclass the standard doclet, or write your own doclet to generate
HTML, XML, MIF, RTF or whatever output format you'd like.

When a custom doclet is not specified with the ~doclet command line option, the Javadoc tool will
use the default standard doclet. The javadoc tool has several command line options that are available
regardless of which doclet is being used. The standard doclet adds a supplementary set of command
line options. Both sets of options are described below in the Javadoc Options section.

What is a Doc Comment?

Documentation comments, often called doc comments, let you associate reference documentation for
use by client programmers using your code. These doc comments are used to generate reference
documentation, which is typically presented in HTML format.

e Doc comments start with the three characters /** and continue until the next * /.

e Leading * characters are ignored on doc comment lines, as are whitespace characters
preceding a leading *.

e Each doc comment (member, class, interface or package) has what is known as the first
sentence, (also known as the summary sentence) which is used as a Summary for the
identifier. The Javadoc tool copies this first sentence to the appropriate member,
class/interface or package “Summary Section”. This makes it important to write crisp and
informative initial sentences that can stand on their own.

A sentence is defined as all text up to the first period with following whitespace. Even though
it’s referred to as a “summary sentence”, it is often a phrase rather than a complete sentence.
It can extend over several lines if needed; just don't include any blank lines. Since the
sentence ends with the first period, so you must avoid abbreviations such as “e.g.” in this
sentence. Following the summary sentence, you may include more sentences to give more
details; but again, don’t include any blank lines.

Consider the following example:

/**

* Get hire date for the given employee. The

* hire date will be retrieved from the central HR System.
*/

public Date getHireDate (int employeelD)
throws InvalidDateFormat;

In the above example, the summary (or first sentence) is “Get hire date for the
given employee.” The programmer should ensure that the first sentence of the doc
comment provides a good summary.

e HTML tags will often be embedded in doc comments as formatting directives or as cross-
reference links to portions of the document, other documents, or external web sites.

o While most HTML tags can be used, you should stay away from the header tags
<h1>, <h2>, and so on. These tags are reserved for use by the javadoc tool.

o When trying to insert the characters <, >, or & use &1t, > and &
respectively.

o Ifyouneed to insert an @ character at the beginning a line within a doc comment, use
@, - otherwise it will be assumed a doc comment tag.

e A common mistake made my new comers to javadoc is placement of your doc comments.
Only doc comments that immediately precede a class, interface, method, or field will be
processed. If anything besides whitespace or comments are between a doc comment and what
it is trying to describe, will be ignored. Consider the following example:

/**
* A utility class used to process employee information
*/

package info.iDevelopment.employee;

import java.sqgl.*;

public class employeeUtilities {

}

In the above example, doc comment at the beginning of the file will not be processed since
because of the “package” and “import” statements inserted between the doc comment and the
class definition.

e Ifno doc comment exists for an inherited method, the method inherits the doc comment from
the supertype.

Doc Comment Tags

Doc comments can contain fags that hold specific kinds of information. Doc comment tags are case-
sensitive start with the @ character, as in @Qauthor or @param. A tag must appear at the beginning of
a line (after the optional *) or they will be treated as normal test. These tags allow you to encode
specific information into your comments in a standardized way, and they allow javadoc to choose the
appropriate output format for that information.

Where Doc Comment Tags Can Be Used

The following section explains where Doc Comment tags can be used. Note that the following tags can
be used in all doc comments: @see, @1ink, @since, and @deprecated.

To understand where Doc Comment tags can be used, it is sometimes easier to group these tags into
the following: Overview Tags, Package Tags, Class/Interface Tags, Field Tags, Constructor/Method

Tags. The following tables group all javadoc recognized tags.

Overview Document Tags

Overview tags are tags that can appear in the doc comment for the overview page (which resides
in the source file typically named overview. html). Like in any other doc comments, these tags
must appear after the description.

Overview Documentation Tags \

@see

@since
Qauthor
@version
{@link}
{@linkplain}
{@docRoot}

Package Document Tags

Package tags are tags that can appear in the doc comment for a package (which resides in the
source file named package.html). The @serial tag can only be used here with the include
or exclude argument.

Package Documentation Tags \

@see

@since
@deprecated
@serial
@author
@version
{@link}
{@linkplain}
{@docRoot}

Class and Interface Documentation Tags

The following are tags that can appear in the doc comment for a class or interface. The @serial
tag can only be used here with the include or exclude argument.

Class and Interface Documentation Tags \

@see

@since
@deprecated
@serial
@author
@version
{@link}
{@linkplain}
{@docRoot}

Field Documentation Tags

The following are the tags that can appear in the doc comment for a field.

Field Documentation Tags \

@see

@since
@deprecated
@serial
@serialField
{@link}
{@linkplain}
{@docRoot}
{@value}

Constructor and Method Documentation Tags

The following are the tags that can appear in the doc comment for a constructor or method, except
for {@inheritDoc}, which cannot appear in a constructor

Constructor and Method Documentation Tags

@see

@since
@deprecated
@param
@return
@throws and @exception
@serialData
{@link}
{@linkplain}
{@inheritDoc}
{@docRoot}

Doc Comment Tags Recognized by javadoc

The javadoc tool parses special tags when they are embedded within a Java doc comment. These
doc tags enable you to autogenerate a complete, well-formatted API from your source code. The
tags start with an "at" sign (@) and are case-sensitive -- they must be typed with the uppercase and
lowercase letters as shown. A tag must start at the beginning of a line (after any leading spaces and
an optional asterisk) or it is treated as normal text. By convention, tags with the same name are
grouped together. For example, put all @see tags together.

Tags come in two types:

Standalone tags - Can be placed only in the tag section that follows the description. These tags
are not set off with curly braces: @tag.

Inline tags - Can be placed anywhere in the comment description or in the comments for
standalone tags. Inline tags are set off with curly braces: {@tag}.
For information about tags we might introduce in future releases, see Proposed Tags.

The current tags are:

Tag Introduced in JDK/SDK

Tag Introduced in JDK/DSK
(@author 1.0
{@docRoot} 1.3
(@deprecated 1.0
(@exception 1.0

{@jinheritDoc} 1.4
{@link} 1.2
{@linkplain} 1.4
(@param 1.0
(@return 1.0
(@see 1.0
(@serial 1.2
(@serialData 1.2
(@serialField 1.2
(@since 1.1
(@throws 1.2
{@value} 14
(@version 1.0

For custom tags, see the -tag option.

@author name-text

Adds an “Author” entry with the specified name-text to the generated docs when the -
author option is used. A doc comment may contain multiple Gauthor tags. You can
specify one name per @author tag or multiple names per tag. In the former case, the
Javadoc tool inserts a comma (,) and space between names. In the latter case, the entire
text is simply copied to the generated document without being parsed. Therefore, use
multiple names per line if you want a localized name separator other than comma.

@deprecated deprecated-text

Adds a comment indicating that this API should no longer be used (even though it may
continue to work). The Javadoc tool moves the deprecated-text ahead of the description,
placing it in italics and preceding it with a bold warning: “Deprecated”.

The first sentence of deprecated-text should at least tell the user when the API was
deprecated and what to use as a replacement. The Javadoc tool copies just the first
sentence to the summary section and index. Subsequent sentences can also explain why it
has been deprecated. You should include a {@1ink} tag (for Javadoc 1.2 or later) that
points to the replacement API:

For Javadoc 1.2 and later, use a { @1ink} tag. This creates the link in-line, where you

want it. For example:
/* *
* @deprecated As of JDK 1.1, replaced by {@link #setBounds (int,int,int,int)}
*/

For Javadoc 1.1, the standard format is to create a @ see tag (which cannot be in-line) for
each @deprecated tag.

{@docRoot}
Represents the relative path to the generated document's (destination) root directory from
any generated page. It is useful when you want to include a file, such as a copyright page
or company logo, that you want to reference from all generated pages. Linking to the
copyright page from the bottom of each page is common.

This { @docRoot} tag can be used both on the command line and in a doc comment:

1. On the command line, where the header/footer/bottom are defined:

javadoc -bottom 'Copyright"

NOTE - When using { @docRoot } this way in a make file, some makefile
programs require special escaping for the brace {} characters. For example, the
Inprise MAKE version 5.2 running on Windows requires double braces:
{{@docRoot}}. It also requires double (rather than single) quotes to enclose
arguments to options such as -bottom (with the quotes around the hre f argument
omitted).

2. Inadoc comment:
/* *
* See the Copyright.
*/

The reason this tag is needed is because the generated docs are in hierarchical
directories, as deep as the number of subpackages. This expression:

would resolve to:

 for java/lang/Object.java
and
 for java/lang/ref/Reference.java

@exception class-name description

The @exception tag is a synonym for @throws.
{@inheritDoc}

This feature is broken in 1.4.0

Inherits documentation from the nearest superclass into the current doc comment. This
allows comments to be abstracted up the inheritance tree, and enables developers to write
around the copied text. Also see inheriting comments.

This tag can be placed in two positions:

e In the comment body (before the first standalone tag), where it will copy the entire
comment body from its superclass.

o In the text argument of a standalone tag, where it will copy the text of the tag from
its superclass.

{@link package.class#member label}

Inserts an in-line link with visible text label that points to the documentation for the
specified package, class or member name of a referenced class.

This tag is very similar to @see -- both require the same references and accept exactly
the same syntax for package.class#member and label. The main difference is that
{@1link} generates an in-line link rather than placing the link in the “See Also” section.
Also, the {@1ink} tag begins and ends with curly braces to separate it from the rest of
the in-line text. If you need to use “}” inside the label, use the HTML entity notation
}

There is no limit to the number of {@1ink} tags allowed in a sentence. You can use this
tag in the description part of a documentation comment or in the text portion of any tag

(such as @deprecated, @return or @param).

For example, here is a comment that refers to the getComponentAt (int, int)
method:

Usethe {@1link #getComponentAt (int, int) getComponentAt} method.

From this, the standard doclet would generate the following HTML (assuming it refers to
another class in the same package):

Use the <a href="Component.html#getComponentAt (int,
int) ">getComponentAt method.

Which appears on the web page as:

Use the getComponentAt method.

You can extend {@1ink} to link to classes not being documented by using the -1ink
option.

{@linkplain package.classf#member label}

Identical to {@1ink}, except the link's label is displayed in plain text than code font.
Useful when the label is plain text. Example:

Refer to {@linkplain add() the overridden method}.
This would display as:

Refer to the overridden method.

@param parameter-name description

Adds a parameter to the “Parameters” section. The description may be continued on the
next line.

@return description

@see

Adds a “Returns” section with the description text. This text should describe the return
type and permissible range of values.

reference

Adds a “See Also” heading with a link or text entry that point to a reference. The tag can
appear in any kind of doc comment. reference can take three different forms. If it begins
with a quote character, it is taken to be the name of a book or some other printed resource
and is displayed as is. If reference begins with a < character, it is taken to be an arbitrary
HTML hyperlink that uses the <a> tag and the hyperlink is inserted into the output
documentation as is. This form of the @see tag can insert links to other online
documents, such as a programmer’s guide or user’s manual.

If reference is not a quoted string or a hyperlink, the @see tag is expected to have the
following form:

@see feature label
In this case, javadoc outputs the text specified by /label and encodes it as a hyperlink to
the specified feature. If label is omitted (as it usually is), javadoc uses the name of the

specified feature instead.

feature can refer to a package, class, interface, method, constructor, or field, using one of
the following forms:

pkgname
A reference to the named package. For example:

@see java.lang.reflect

pkgname.classname
A reference to a class or interface specified with its full package name. For
example:
@see java.util.List

classname
A reference to a class or interface specified without its package name. For
example:

@see List

Jjavadoc resolves this reference by searching the current package and the list of
imported classes for a class with this name.

classnamet#tmethodname

A reference to a named method or constructor within the specified class. For
example:

@see java.io.InputStreamffreset
@see InputStreamficlose

If the class is specified without its package name, it is resolved as described for
classname. This syntax is ambiguous if the method is overloaded or the class
defines a field by the same name.

classname#methodname(paramtypes)
A reference to a method or constructor with the type of it parameters explicitly
specified. This form of the @see tag is useful when cross-referencing an
overloaded method. For example:
@see InputStreamf#fread(bytel[], int, int)

#methodname
A reference to a non-overloaded method or constructor in the current class or
interface or one of the containing classes, superclasses, or super-interfaces or the
current class or interface. Use this concise form to refer to other methods in the
same class. For example:
@see f#setBackgroundColor

#methodname(paramtypes)
A reference to a method or constructor in the current class or interface or one of
its superclasses or containing classes. This form works with overloaded methods
because it lists the types of the method parameters explicitly. For example:
@see #setPosition(int, int)

classname#fieldname
A reference to a named field within the specified class. For example:

@see java.io.BufferedInputStreamfbuf

#fieldname

A reference to a field in the current class or interface or one of the containing
classes, superclasses, or superinterfaces of the current class or interface. For
example:

@see #y
@since since-text

Adds a “Since” heading with the specified since-text to the generated documentation. The
text has no special internal structure. This tag means that this change or feature has
existed since the software release specified by the since-text. For example:

@since 1.4

For source code in the Java platform, this tag indicates the version of the Java platform
API specification (not necessarily when it was added to the reference implementation).

@serial field-description | include | exclude

Used in the doc comment for a default serializable field.

An optional field-description should explain the meaning of the field and list the
acceptable values. If needed, the description can span multiple lines. The standard doclet
adds this information to the serialized form page.

If a serializable field was added to a class some time after the class was made
serializable, a statement should be added to its description to identify at which version it
was added.

The include and exclude arguments identify whether a class or package should be
included or excluded from the serialized form page. They work as follows:

e A public or protected class that implements Serializable is included unless
that class (or its package) is marked @serial exclude.

e A private or package-private class that implements Serializable is
excluded unless that class (or its package) is marked @serial include.

Examples: The javax.swing package is marked @serial exclude (in
package.html). The public class java.security.BasicPermission is
marked @serial exclude. The package-private class
java.util.PropertyPermissionCollection is marked @serial include.

The tag @serial ata class level overrides @serial at a package level.

For more information about how to use these tags, along with an example, see
“Documenting Serializable Fields and Data for a Class,” Section 1.6 of the Java Object
Serialization Specification. Also see the Serialization FAQ, which covers common
questions, such as “Why do I see javadoc warnings stating that [am missing @serial
tags for private fields if I am not running javadoc with the -private switch?”

@serialField field-name field-type field-description

Documents an ObjectStreamField component of a Serializable class’
serialPersistentFields member. One @serialField tag should be used for
each ObjectStreamField component.

@serialData data-description

The data-description documents the types and order of data in the serialized form.
Specifically, this data includes the optional data written by the writeObject method
and all data (including base classes) written by the
Externalizable.writeExternal method.

The @serialData tag can be used in the doc comment for the writeObject,
readObject, writeExternal, and readExternal methods.

@throws class-name description

The @throws and @exception tags are synonyms. Adds a “Throws” subheading to
the generated documentation, with the class-name and description text. The class-name is
the name of the exception that may be thrown by the method. If this class is not fully-
specified, the javadoc tool uses the search order to look up this class. Multiple
@throws tags can be used in a given doc comment for the same or different exceptions.
The @throws documentation is copied from an overridden method to a subclass only
when the exception is explicitly declared in the overridden method. The same is true for
copying from an interface method to an implementing method. You can use
{@inheritDoc} to force @throws to inherit documentation.

{@value}

When used in a static field comment, displays the value of the constant. These are the
values displayed on the Constant Field Values page.

@Qversion version-text

Adds a “Version” subheading with the specified version-text to the generated docs when
the —version option is used. The text has no special internal structure. A doc comment
may contain at most one @version tag. Version normally refers to the version of the
software (such as the Java 2 SDK) that contains this class or member.

Doc Comments and Inheritance

You can avoid re-typing doc comments by being aware of how the javadoc tool duplicates (or inherits)
comments for methods that override or implement other methods. This occurs in three cases:

e When a method in a class overrides a method in a superclass

e When a method in an interface overrides a method in a superinterface

e When a method in a class implements a method in an interface

In the first two cases, if a method m () overrides another method, The javadoc tool will generate a
subheading “Overrides” in the documentation for m () , with a link to the method it is overriding.

In the third case, if a method m () in a given class implements a method in an interface, the javadoc
tool will generate a subheading “Specified by” in the documentation for m () , with a link to the
method it is implementing.

In all three of these cases, if the method m () contains no doc comments or tags, the javadoc tool will
also copy the text of the method it is overriding or implementing to the generated documentation for
m () . So if the documentation of the overridden or implemented method is sufficient, you do not need
to add documentation for m () . If you add any doc comment or tag to m () , the “Overrides” or
“Specified by” subheading and link will still appear, but no text will be copied.

Conventions - Doc Comments

The following are useful tips and conventions for writing descriptions in doc comments.

e Use <code> style for keywords and names.

Keywords and names are offset by <code>. . .</code> when mentioned in a description.
This includes:

Java keywords
Package names
Class names
Method names
Interface names
Field names
Argument names
Code examples

ASANENENENENENEN

Use in-line links economically

You are encouraged to add links for API names (listed immediately above) using the

{@link} tag. It is not necessary to add links for all API names in a doc comment. Because

links call attention to themselves (by their color and underline in HTML, and by their length

in source code doc comments), it can make the comments more difficult to read if used

profusely. We therefore recommend adding a link to an API name if:

v’ The user might actually want to click on it for more information (in your judgment), and

v Only for the first occurrence of each API name in the doc comment (don't bother
repeating a link)

Our audience is advanced (not novice) programmers, so it is generally not necessary to link to
API in the java.lang package (such as String), or other API you feel would be well-known.

Omit parentheses for the general form of methods and constructors

When referring to a method or constructor that has multiple forms, and you mean to refer to a
specific form, use parentheses and argument types.

For example, ArrayList has two add methods:
add (Object) and add (int, Object).

The add (int, Object) method adds an item at a specified position in this arraylist.

However, if referring to both forms of the method, omit the parentheses altogether. It is

misleading to include empty parentheses, because that would imply a particular form of the

method. The intent here is to distinguish the general method from any of its particular forms.

Include the word "method" to distinguish it as a method and not a field.

The add method enables you to insert items. (Preferred)

The add () method enables you to insert items. (Avoid when you mean “all forms” of the
add method)

Okay to use phrases instead of complete sentences, in the interests of brevity.

This holds especially in the initial summary and in @param tag descriptions.

Use 3rd person (descriptive) not 2nd person (prescriptive).

The description is in 3rd person declarative rather than 2nd person imperative.

Gets the label. (Preferred)

Get the label. (Avoid)

Method descriptions begin with a verb phrase.
A method implements an operation, so it usually starts with a verb phrase:

Gets the label of this button. (Preferred)
This method gets the label of this button. (Avoid)

Class/interface/field descriptions can omit the subject and simply state the object.
These API often describe things rather than actions or behaviors:

A button label. (Preferred)
This field is a button label. (Avoid)

Use “this” instead of “the” when referring to an object created from the current class.
For example, the description of the get Toolkit method should read as follows:

Gets the toolkit for this component. (Preferred)
Gets the toolkit for the component. (Avoid)

Add description beyond the API name.

The best API names are “self-documenting”, meaning they tell you basically what the API
does. If the doc comment merely repeats the API name in sentence form, it is not providing
more information.

For example, if a method description uses only the words that appear in the method name,
then it is adding nothing at all to what you could infer. The ideal comment goes beyond those
words and should always reward you with some bit of information that was not immediately
obvious from the API name.

Avoid - The description below says nothing beyond what you know from reading the method
name. The words “set”, “tool”, “tip”, and “text” are simply repeated in a sentence.

/**
* Sets the tool tip text.

*
* @param text The text of the tool tip.
*/

public void setToolTipText (String text) {

Preferred - This description more completely defines what a tool tip is, in the larger context of
registering and being displayed in response to the cursor.

*

/
Registers the text to display in a tool tip. The text
displays when the cursor lingers over the component.

@param text The string to display. If the text is null,
the tool tip is turned off for this component.

b S R S

~

public void setToolTipText (String text) {
Be clear when using the term "field".

Be aware that the word "field" has two meanings:

o Static field, which is another term for “class variable”

o Text field, as in the TextField class. Note that this kind of field might be restricted to
holding dates, numbers or any text. Alternate names might be “date field” or “number
field”, as appropriate.

e Avoid Latin

Use “also known as” instead of “aka”, use “that is” or “to be specific” instead of “i.e.”, use
“for example” instead of “e.g.”, and use “in other words” or “namely” instead of “viz.”

Conventions - Doc Comment Tags

Order of Tags

Include tags in the following order:

* @author (classes and interfaces only, required)

* @version (classes and interfaces only, required)
(see footnote 1)

*

* (@param (methods and constructors only)

* @return (methods only)

* (@exception (@throws is a synonym added in Javadoc 1.2)

* (@see

* @since

* @serial (or @serialField or @serialData)

* (@deprecated (see How and When To Deprecate APIs)

Tag Blocks

For readability, divide the tags into blocks of related tags. The blocks shown above are an example.

Ordering Multiple Tags

We employ the following conventions when a tag appears more than once in a documentation
comment. If desired, groups of tags, such as multiple @see tags, can be separated from the other tags
by a blank line with a single asterisk.

Multiple @author tags should be listed in chronological order, with the creator of the class listed at
the top.

Multiple @param tags should be listed in argument-declaration order. This makes it easier to visually
match the list to the declaration.

Multiple @throws tags (also known as @exception) should be listed alphabetically by the
exception names.

Multiple @see tags should be ordered as follows, which is roughly the same order as their arguments
are searched for by javadoc, basically from nearest to farthest access, from least-qualified to fully-
qualified, The following list shows this progression. Notice the methods and constructors are in
"telescoping" order, which means the “no arg” form first, then the “1 arg” form, then the “2 arg” form,
and so forth. Where a second sorting key is needed, they could be listed either alphabetically or
grouped logically.

@see #field

@see #Constructor (Type, Type...)

@see #Constructor (Type id, Type id...)
@see #method (Type, Type,...)

@see #method (Type id, Type, id...)

@see
@see
@see
@see
@see
@see
@see
@see
@see
@see
@see
@see
@see

Class

Class#field

Class#Constructor (Type, Type...)
Class#Constructor (Type id, Type id)
Class#method (Type, Type,...)
Class#method (Type id, Type id,...)
package.Class

package.Class#field
package.Class#Constructor (Type, Type...)
package.Class#Constructor (Type id, Type id)
package.Class#method (Type, Type,...)
package.Class#method (Type id, Type, id)
package

Required Tags

An @param tag is required for every parameter, even when the description is obvious. The @return
tag is required for every method that returns something other than void, even if it is redundant with
the method description. (Whenever possible, find something non-redundant [ideally, more specific] to
use for the tag comment.)

These principles expedite automated searches and automated processing. Frequently, too, the effort to
avoid redundancy pays off in extra clarity.

Specific Tags Conventions

The following list are additional guidelines to create comments for each tag by Java Software.

Qauthor

You can provide one @author tag, multiple @author tags, or no @author tags. In
these days of the community process when development of new APIs is an open, joint
effort, the JSR can be consider the author for new packages at the package level. For
example, the new package java.nio has “@Qauthor JSR-51 Expert Group” at
the package level. Then individual programmers can be assigned to Qauthor at the
class level. As this tag can only be applied at the overview, package and class level, the
tag applies only to those who make significant contributions to the design or
implementation, and so would not ordinarily include technical writers.

The @author tag is not critical, because it is not included when generating the API
specification, and so it is seen only by those viewing the source code. (Version history
can also be used for determining contributors for internal purposes.)

If someone felt strongly they need to add @author at the member level, they could do
so by running javadoc using the new 1.4 -tag option:

-tag author:a:"Author:"

If the author is unknown, use “unascribed” as the argument to Qauthor.

@version

The Java Software convention for the argument to the @version tag is the SCCS string
“$I%, %G%”, which converts to something like “1.39, 02/28/97” (mm/dd/yy)
when the file is checked out of SCCS.

@param

The @param tag is followed by the name (not data type) of the parameter, followed by a
description of the parameter. By convention, the first noun in the description is the data

type of the parameter. (Articles like “a”, “an”, and "the" can precede the noun.) An
exception is made for the primitive int, where the data type is usually omitted.

Additional spaces can be inserted between the name and description so that the
descriptions line up in a block. Dashes or other punctuation should not be inserted before
the description, as the javadoc tool inserts one dash.

Parameter names are lowercase by convention. The data type starts with a lowercase
letter to indicate an object rather than a class. The description is most usually a phrase,
starting with a lowercase letter and ending without a period, unless it contains a complete
sentence or is followed by another sentence (as described further below).

Example:

* @param ch the character to be tested
* (@param observer the image observer to be notified

Do not bracket the name of the parameter after the @param tag with

<code>. . .</code> since Javadoc 1.2 automatically does this. (The javadoc tool will
do the right thing and will not insert code tags around the parameter name if they are
already present.)

When writing the comments themselves:
Prefer a phrase to a sentence.

Giving a phrase, do not capitalize; do not end with a period.
@param x a phrase goes here

Giving a sentence, capitalize it and end it with a period.
@param x This is a sentence.

When giving multiple sentences, follow all sentence rules.
@param x This is sentence #1. This is sentence #2.

Giving multiple phrases, separate with a semi-colon and a space.
@param x phrase #1 here; phrase #2 here

Giving a phrase followed by a sentence, do not capitalize the phrase. However, end it
with a period to distinguish the start of the next sentence.
@param x a phrase goes here. This is a sentence.

@return

Omit @return for methods that return void and for constructors; include it for all other
methods, even if its content is entirely redundant with the method description. Having an
explicit @return tag makes it easier for someone to find the return value quickly.
Whenever possible, supply return values for special cases (such as specifying the value
returned when an out-of-bounds argument is supplied).

@deprecated

The @deprecated description in the first sentence should at least tell the user when the
API was deprecated and what to use as a replacement. Only the first sentence will appear
in the summary section and index. Subsequent sentences can also explain why it has been
deprecated. When generating the description for a deprecated API, the javadoc tool
moves the @deprecated text ahead of the description, placing it in italics and
preceding it with a bold warning: “Deprecated”. An @see tag (for Javadoc 1.1) or
{@link} tag (for Javadoc 1.2 or later) should be included that points to the replacement
method:

For Javadoc 1.2 and later, the standard format is to use @deprecated tag and the in-
line {@1ink} tag. This creates the link in-line, where you want it. For example:

/**

* @deprecated As of JDK 1.1, replaced by {@link
#setBounds (int, int, int,int) }

*/

For Javadoc 1.1, the standard format is to create a pair of @deprecated and @see
tags. For example:

/**

* (@deprecated As of JDK 1.1, replaced by setBounds

* @see #setBounds (int, int, int, int)

*/

If the member has no replacement, the argument to @deprecated should be “No
replacement”.

Do not add @deprecated tags without first checking with the appropriate engineer.
Substantive modifications should likewise be checked first.

@since

Specify the product version when the Java name was added to the API specification (if
different from the implementation). For example, if a package, class, interface or member
was added to the Java 2 Platform, Standard Edition, API Specification at version 1.2, use:
/ * %

* @since 1.2

*/

The Javadoc standard doclet displays a “Since” subheading with the string argument as
its text. This subheading appears in the generated text only in the place corresponding to
where the @since tag appears in the source doc comments (The javadoc tool does not
proliferate it down the hierarchy).

(The convention once was “@since JDK1.2” but because this is a specification of the
Java Platform, not particular to the Sun JDK or SDK, we have dropped “JDK”.)

When a package is introduced, specify an @since tag in its package description and
each of its classes. (Adding @since tags to each class is technically not needed, but is
our convention, as enables greater visibility in the source code.) In the absence of
overriding tags, the value of the @since tag applies to each of the package's classes and
members.

When a class (or interface) is introduced, specify one @since tag in its class description
and no @since tags in the members. Add an @since tag only to members added in a
later version than the class. This minimizes the number of @since tags.

If a member changes from protected to public in a later release, the @since tag would
not change, even though it is now usable by any caller, not just subclassers.

@throws (@exception was the original tagq)

A @throws tag should be included for any checked exceptions (declared in the throws
clause), as illustrated below, and also for any unchecked exceptions that the caller might
reasonably want to catch, with the exception of Nul1PointerException. Errors
should not be documented, as they are unpredictable. For more details, please see
Documenting Exceptions with the @throws Tag.
/ * *
* @throws IOException If an input or output exception occurred
*/
public void f () throws IOException {
// body
}

Conventions - Documenting the Default Constructors

If a class contains no constructor declarations, then a default constructor that takes no parameters is
automatically provided. It invokes the superclass constructor with no arguments. The constructor has
the same access as its class.

The javadoc tool generates documentation for default constructors. When it documents such a
constructor, javadoc leaves its description blank, because a default constructor can have no doc
comment. The question then arises: How do you add a doc comment for a default constructor? The
simple answer is that it is not possible — and, conveniently, our programming convention is to avoid
default constructors. (We considered but rejected the idea that the javadoc tool should generate a
default comment for default constructors.)

Good programming practice dictates that code should never make use of default constructors in public
APIs: All constructors should be explicit. That is, all default constructors in public and protected
classes should be turned into explicit constructor declarations with the appropriate access modifier.
This explicit declaration also gives you a place to write documentation comments.

The reason this is good programming practice is that an explicit declaration helps prevents a class from
inadvertently being made instantiable, as the design engineer has to actually make a decision about the
constructor’s access. We have had several cases where we did not want a public class to be
instantiable, but the programmer overlooked the fact that its default constructor was public. If a class is
inadvertently allowed to be instantiable in a released version of a product, upward compatibility
dictates that the unintentional constructor be retained in future versions. Under these unfortunate
circumstances, the constructor should be made explicit and deprecated (using @deprecated).

Note that when creating an explicit constructor, it must match precisely the declaration of the
automatically generated constructor; even if the constructor should logically be protected, it must be
made public to match the declaration of the automatically generated constructor, for compatibility. An
appropriate doc comment should then be provided. Often, the comment should be something as simple
as:

/**

* Sole constructor. (For invocation by subclass constructors, typically
* implicit.)

*/

protected AbstractMap () {

}

Conventions - Documenting Exceptions with @throws Tag
NOTE - The tags @throws and @exception are synonyms.

Documenting Exceptions in API Specs

The API specification for methods is a contract between a caller and an implementor. Javadoc-
generated API documentation contains two ways of specifying this contract for exceptions — the
“throws” clause in the declaration, and the @throws Javadoc tag. These guidelines describe how to
document exceptions with the @throws tag.

Throws Tag

The purpose of the @throws tag is to indicate which exceptions the programmer must catch (for
checked exceptions) or might want to catch (for unchecked exceptions).

Guidelines - Which Exceptions to Document

Document the following exceptions with the @throws tag:

v All checked exceptions.
(These must be declared in the throws clause.)

v" Those unchecked exceptions that the caller might reasonably want to catch.
(It is considered poor programming practice to include unchecked exceptions in the throws
clause.)

Documenting these in the @throws tag is up to the judgment of the API designer, as described
below.

Documenting Unchecked Exceptions

It is generally desirable to document the unchecked exceptions that a method can throw: this allows
(but does not require) the caller to handle these exceptions. For example, it allows the caller to
“translate” an implementation-dependent unchecked exception to some other exception that is more
appropriate to the caller's exported abstraction.

Since there is no way to guarantee that a call has documented all of the unchecked exceptions that it
may throw, the programmer must not depend on the presumption that a method cannot throw any
unchecked exceptions other than those that it is documented to throw. In other words, you should
always assume that a method can throw unchecked exceptions that are undocumented.

Note that it is always inappropriate to document that a method throws an unchecked exception that is
tied to the current implementation of that method. In other words, document exceptions that are
independent of the underlying implementation. For example, a method that takes an index and uses an
array internally should not be documented to throw an ArrayIndexOutOfBoundsException, as
another implementation could use a data structure other than an array internally. It is, however,
generally appropriate to document that such a method throws an IndexOutOfBoundsException.

Keep in mind that if you do not document an unchecked exception, other implementations are free to
not throw that exception. Documenting exceptions properly is an important part of write-once, run-

anywhere.

Background on Checked and Unchecked Exceptions

The idea behind checking an exception is that the compiler checks at compile-time that the exception is
properly being caught in a try-catch block.
You can identify checked and unchecked exceptions as follows.

v Unchecked exceptions are the classes Runt imeException, Error and their subclasses.
v All other exception subclasses are checked exceptions.

Note that whether an exception is checked or unchecked is not defined by whether it is included in a
throws clause.

Background on the Throws Clause

Checked exceptions must be included in a throws clause of the method. This is necessary for the
compiler to know which exceptions to check. For example (in java.lang.Class):

public static Class forName (String className)
throws ClassNotFoundException

By convention, unchecked exceptions should not be included in a throws clause. (Including them is
considered to be poor programming practice. The compiler treats them as comments, and does no
checking on them.) The following is poor code — since the exception is a RuntimeException, it
should be documented in the @throws tag instead.

java.lang.Byte source code:

public static Byte valueOf (String s, int radix) throws NumberFormatException

Note that the Java Language Specification also shows unchecked exceptions in throws clauses (as
follows). Using the throws clause for unchecked exceptions in the spec is merely a device meant to
indicate this exception is part of the contract between the caller and implementor. The following is an
example of this (where “final” and “synchronization” are removed to make the comparison simpler).

java.util.Vector source code:
public Object elementAt (int index)

java.util.Vector spec in the Java Language Specification, 1lst Ed. (p. 656):
public Object elementAt (int index) throws IndexOutOfBoundsException

Conventions - Package Level Doc Comments
With Javadoc 1.2, package-level doc comments are available. Each package can have its own package-
level doc comment source file that the javadoc tool will merge into the documentation that it produces.
This file is named package . html (and is same name for all packages). This file is kept in the source

directory along with all the * . Java files. (Do not put the packages.html file in the new doc-
files source directory, because those files are only copied to the destination and are not processed.)

Here's an example of a package-level source file for java. text and the file that the javadoc tool
generates:

package.html ---————---———- > package-summary.html
(source file) javadoc (destination file)

The javadoc tool processes package.html by doing three things:

1. Copies its contents (everything between <body> and </body>) below the summary tables
in the destination file package-summary.html.

2. Processes any @see, @since or {@link} javadoc tags that are present.
3. Copies the first sentence to the right-hand column of the “Overview Summary”.

Template for package . html source file.

At Sun Microsystems, we use the following template when creating a new package doc comment file.
This contains a copyright statement. Obviously, if you were from a different company, you would
supply your own copyright statement. An engineer would copy this whole file, rename it to
package.html, and delete the lines set off with hash marks: #####. One such file should go into
each package directory of the source tree.

Contents of package.html source file

The package doc comment should provide (directly or via links) everything necessary to allow
programmers to use the package. It is a very important piece of documentation: for many facilities
(those that reside in a single package but not in a single class) it is the first place where programmers
will go for documentation. It should contain a short, readable description of the facilities provided by
the package (in the introduction, below) followed by pointers to detailed documentation, or the detailed
documentation itself, whichever is appropriate. Which is appropriate will depend on the package: a
pointer is appropriate if it's part of a larger system (such as, one of the 37 packages in Corba), or if a
Framemaker document already exists for the package; the detailed documentation should be contained
in the package doc comment file itself if the package is self-contained and doesn't require extensive
documentation (such as java.math).

To sum up, the primary purpose of the package doc comment is to describe the purpose of the package,
the conceptual framework necessary to understand and to use it, and the relationships among the
classes that comprise it. For large, complex packages (and those that are part of large, complex APIs) a
pointer to an external architecture document is warranted.

The following are the sections and headings you should use when writing a package-level comment
file. There should be no heading before the first sentence, because the Javadoc tool picks up the first
text as the summary statement.

v" Make the first sentence a summary of the package. For example: “Provides classes and
interfaces for handling text, dates, numbers and messages in a manner independent of natural
languages.”

v Describe what the package contains and state its purpose.

Package Specification

v" Include a description of or links to any package-wide specifications for this package
that are not included in the rest of the javadoc-generated documentation. For example,
the java.awt package might describe how the general behavior in that package is allowed to
vary from one operating system to another (Windows, Solaris, Mac).

v Include links to any specifications written outside of doc comments (such as in
FrameMaker or whatever) if they contain assertions not present in the javadoc-
generated files.

An assertion is a statement a conforming implementor would have to know in order to
implement the Java platform.

On that basis, at Sun, references in this section are critical to the Java Compatibility Kit
(JCK). The Java Compatibility Kit includes a test to verify each assertion, to determine what
passes as Java Compatible™. The statement "Returns an int" is an assertion. An example
is not an assertion.

Some “specifications” that engineers have written contain no assertions not already stated in
the API specs (javadoc) -- they just elaborate on the API specs. In this respect, such a
document should not be referred to in this section, but rather should be referred to in the next
section.

v Include specific references. If only a section of a referenced document should be
considered part of the API spec, then you should link or refer to only that section and refer to
the rest of the document in the next section. The idea is to clearly delineate what is part of
the API spec and what is not, so the JCK team can write tests with the proper breadth. This
might even encourage some writers to break documents apart so specs are separate.

Related Documentation

v Include references to any documents that do not contain specification assertions, such as
overviews, tutorials, examples, demos, and guides.

Class and Interface Summary
[Omit this section until we implement @category tag]

v Describe logical groupings of classes and interfaces
v' @see other packages, classes and interfaces

Conventions - Documenting Anonymous Classes

The Javadoc tool does not directly document anonymous classes — that is, their declarations and doc
comments are ignored. If you want to document an anonymous class, the proper way to do so is in a
doc comment of its outer class, or another closely associated class.

For example, if you had an anonymous TreeSelectionListener inner class in a method
makeTree that returns a JTree object that users of this class might want to override, you could
document in the method comment that the returned JTree hasa TreeSelectionListener
attached to it:

*

/

* %% ok ok kX X

/

The method used for creating the tree. Any structural modifications

to the display of the Jtree should be done by overriding this method.

This method adds an anonymous TreeSelectionListener to the returned JTree.
Upon receiving TreeSelectionEvents, this listener calls refresh with

the selected node as a parameter.

public JTree makeTree (ArealInfo ai) {

}

Conventions - Including Images

This section covers images used in the doc comments, not images directly used by the source code.

NOTE: The bullet and heading images required with Javadoc version 1.0 and 1.1 are located in
the images directory of the JDK download bundle: jdk1.1/docs/api/images/. Those
images are no longer needed starting with 1.2.

Prior to Javadoc 1.2, the Javadoc tool would not copy images to the destination directory — you had to
do it in a separate operation, either manually or with a script. Javadoc 1.2 looks for and copies to the
destination directory a directory named “doc-files” in the source tree (one for each package) and its
contents. (It does a shallow copy for 1.2 and 1.3, and a deep copy for 1.4 and later.) Thus, you can put
into this directory any images (GIF, JPEG, etc) or other files not otherwise processed by the Javadoc

tool.

The following are the Java Software proposals for conventions for including images in doc comments.
The master images would be located in the source tree; when the Javadoc tool is run with the standard
doclet, it would copy those files to the destination HTML directory.

Images in Source Tree

v

Naming of doc images in source tree - Name GIF images <class>-1.gif, incrementing
the integer for subsequent images in the same class. Example: Button-1.gif.

Location of doc images in source tree - Put doc images in a directory called “doc-files”.
This directory should reside in the same package directory where the source files reside. (The
name “doc-files” distinguishes it as documentation separate from images used by the source
code itself, such as bitmaps displayed in the GUI.)

Example: A screen shot of a button, Button-1.gif, might be included in the class
comment for the Button class. The Button source file and the image would be located at:

java/awt/Button.java (source file)
java/awt/doc-files/Button-1.gif (image file)

Images in HTML Destination

v

v

Naming of doc images in HTML destination - Images would have the same name as they
have in the source tree. Example: Button-1.gif

Location of doc images in HTML destination - With hierarchical file output, such as
Javadoc 1.2, directories would be located in the package directory named “doc-files”. For

example:

api/java/awt/doc-files/Button-1.gif

With flat file output, such as Javadoc 1.1, directories would be located in the package
directory and named “images—-<package>". For example:

api/images-java.awt/
api/images-java.awt.swing/

Synopsis of the javadoc Tool

javadoc [options] [packagenames] [sourcefilenames] [-subpackages
pkgl:pkg2:...] [@argfiles]

Arguments can be in any order.
options

Command-line options, as specified in the next section of this document.
packagenames

A series of names of packages, separated by spaces, such as java.lang
java.lang.reflect java.awt. You must separately specify each package you want to
document. The Javadoc tool uses -sourcepath to look for these package names. The Javadoc
tool does not recursively traverse subpackages. Wildcards such as asterisks (*) are not
allowed.

sourcefilenames

A series of source file names, separated by spaces, each of which can begin with a path and
contain a wildcard such as asterisk (*). The Javadoc tool will process every file whose name ends
with ". java", and whose name, when stripped of that suffix, is actually a legal class name (see
Identifiers). Therefore, you can name files with dashes (such as X-Buffer), or other illegal
characters, to prevent them from being documented. This is useful for test files and files generated
from templates. The path that precedes the source file name determines where javadoc will look
for the file. (The Javadoc tool does not use ~sourcepath to look for these source file names.)
For example, passing in Button.java is identical to ./Button.java. An example source file name
with a full path is /home/src/java/awt/Graphics/*.java. You can also mix
packagenames and sourcefilenames, as in Example - Documenting Both Packages and
Classes

-subpackages pkgl:pkg2:...

Generates documentation from source files in the specified packages and recursively in their
subpackages. An alternative to supplying packagenames or sourcefilenames.

@argfiles

One or more files that contain a list of Javadoc options, packagenames and sourcefilenames in any
order. Wildcards (*) and -J options are not allowed in these files.

Javadoc Command Line Options
-overview path\filename

Specifies that javadoc should retrieve the text for the overview documentation from the “source”
file specified by path\ filename and place it on the Overview page (overview-
summary.html). The path\filename is relative to the —sourcepath.

While you can use any name you want for filename and place it anywhere you want for path, a
typical thing to do is to name it overview.html and place it in the source tree at the directory that
contains the topmost package directories. In this location, no path is needed when documenting

packages, since -sourcepath will point to this file. For example, if the source tree for the
java.lang package is C:\src\classes\java\lang\, then you could place the overview
fileatC:\src\classes\overview.html. See Real World Example.

For information about the file specified by path\ filename, see overview comment file.

Note that the overview page is created only if you pass into javadoc two or more package names.
For further explanation, see HTML Frames.)

The title on the overview page is set by ~doctitle.

-public
Shows only public classes and members.

-protected
Shows only protected and public classes and members. This is the default.

-package
Shows only package, protected, and public classes and members.

-private
Shows all classes and members.

-help
Displays the online help, which lists these javadoc and doclet command line options.

-doclet class
Specifies the class file that starts the doclet used in generating the documentation. Use the fully-
qualified name. This doclet defines the content and formats the output. If the -doclet option is not
used, javadoc uses the standard doclet for generating the default HTML format. This class must
contain the start (Root) method. The path to this starting class is defined by the —
docletpath option.
For example, to call the MIF doclet, use:

-doclet com.sun.tools.doclets.mif.MIFDoclet

-docletpath classpathlist
Specifies the path to the doclet starting class file (specified with the -doclet option) and any jar
files it depends on. If the starting class file is in a jar file, then this specifies the path to that jar file,
as shown in the example below. You can specify an absolute path or a path relative to the current
directory. If classpathlist contains multiple paths or jar files, they should be separated with a colon
(:) on Solaris and a semi-colon (;) on Windows. This option is not necessary if the doclet starting
class is already in the search path.
Example of path to jar file that contains the starting doclet class file. Notice the jar filename is
included.

-docletpath C:\user\mifdoclet\lib\mifdoclet.jar

Example of path to starting doclet class file. Notice the class filename is omitted.
-docletpath C:\user\mifdoclet\classes\com\sun\tools\doclets\mif\

-1.1
This feature has been removed from Javadoc 1.4. There is no replacement for it. This option
created documentation with the appearance and functionality of documentation generated by
Javadoc 1.1 (it never supported nested classes). If you need this option, use Javadoc 1.2 or 1.3
instead.

-sourcepath sourcepathlist
Specifies the search paths for finding source files (. java) when passing package names or -
subpackages into the javadoc command. The sourcepathlist can contain multiple paths by

separating them with a semicolon (;). The Javadoc tool will search in all subdirectories of the
specified paths. Note that this option is not only used to locate the source files being documented,
but also to find source files that are not being documented but whose comments are inherited by
the source files being documented.

Note that you can use the -sourcepath option only when passing package names into the javadoc
command -- it will not locate . java files passed into the javadoc command. (To locate . java
files, cd to that directory or include the path ahead of each file, as shown at Documenting One or
More Classes.) If -sourcepath is omitted, javadoc uses the class path to find the source files (see -
classpath). Therefore, the default -sourcepath is the value of class path. If —-classpath is
omitted and you are passing package names into javadoc, it looks in the current directory (and
subdirectories) for the source files.

Set sourcepathlist to the root directory of the source tree for the package you are documenting. For
example, suppose you want to document a package called com.mypackage whose source files
are located at:

C:\user\src\com\mypackage*.java

In this case you would specify the sourcepath to C: \user\src, the directory that contains
com\mypackage, and then supply the package name com.mypackage:

C:> javadoc -sourcepath C:\user\src com.mypackage

This is easy to remember by noticing that if you concatenate the value of sourcepath and the
package name together and change the dot to a backslash “\”, you end up with the full path to the
package: C:\user\src\com\mypackage.

To point to two source paths:

C:> javadoc -sourcepath C:\userl\src;C:\user2\src com.mypackage

-classpath classpathlist
Specifies the paths where javadoc will look for referenced classes (. class files) -- these are the
documented classes plus any classes referenced by those classes. The classpathlist can contain
multiple paths by separating them with a semicolon (;). The Javadoc tool will search in all
subdirectories of the specified paths. Follow the instructions in class path documentation for
specifying classpathlist.
If -sourcepath is omitted, the Javadoc tool uses ~classpath to find the source files as well as
class files (for backward compatibility). Therefore, if you want to search for source and class files
in separate paths, use both -sourcepath and —classpath.

For example, if you want to document com . mypackage, whose source files reside in the
directory C: \user\src\com\mypackage, and if this package relies on a library in
C:\user\1lib, you would specify:

C:> javadoc -classpath \user\lib -sourcepath \user\src com.mypackage

As with other tools, if you do not specify —~classpath, the Javadoc tool uses the CLASSPATH

environment variable, if it is set. If both are not set, the javadoc tool searches for classes from the
current directory.

For an in-depth description of how the Javadoc tool uses —classpath to find user classes as it

relates to extension classes and bootstrap classes, see How Classes Are Found.

-bootclasspath classpathlist

Specifies the paths where the boot classes reside. These are nominally the Java platform classes.
The bootclasspath is part of the search path the javadoc tool will use to look up source and class
files. See How Classes Are Found. for more details. Separate directories in classpathlist with
semicolons (;).

-extdirs dirlist

Specifies the directories where extension classes reside. These are any classes that use the Java
Extension mechanism. The extdirs is part of the search path the Javadoc tool will use to look up
source and class files. See —~classpath (above) for more details. Separate directories in dirlist
with semicolons (;).

-verbose

Provides more detailed messages while javadoc is running. Without the verbose option, messages
appear for loading the source files, generating the documentation (one message per source file),
and sorting. The verbose option causes the printing of additional messages specifying the number
of milliseconds to parse each java source file.

-quiet

Shuts off non-error and non-warning messages, leaving only the warnings and errors appear,
making them easier to view. Also suppresses the version string.

-locale language country variant

Important - The -1ocale option must be placed ahead (to the left) of any options provided by
the standard doclet or any other doclet. Otherwise, the navigation bars will appear in English. This
is the only command-line option that is order-dependent.

Specifies the locale that javadoc uses when generating documentation. The argument is the name
of the locale, as described in java.util.Locale documentation, such as en_US (English,
United States) or en_ US_WIN (Windows variant).

Specifying a locale causes javadoc to choose the resource files of that locale for messages (strings
in the navigation bar, headings for lists and tables, help file contents, comments in stylesheet.css,
and so forth). It also specifies the sorting order for lists sorted alphabetically, and the sentence
separator to determine the end of the first sentence. It does not determine the locale of the doc
comment text specified in the source files of the documented classes.

-encoding name

Specifies the encoding name of the source files, such as EUCJIS/SIIS. If this option is not
specified, the platform default converter is used.

-Jflag

Passes flag directly to the runtime system java that runs javadoc. Notice there must be no space
between the J and the £1ag. For example, if you need to ensure that the system sets aside 32
megabytes of memory in which to process the generated documentation, then you would call the -
Xmx option of java as follows (-Xms is optional, as it only sets the size of initial memory, which
is useful if you know the minimum amount of memory required):

C:> javadoc -J-Xmx32m -J-Xms32m com.mypackage

To tell what version of javadoc you are using, call the “~version” option of java:
C:> javadoc -J-version
java version "1.2"

Classic VM (build JDK-1.2-V, green threads, sunwjit)

(The version number of the standard doclet appears in its output stream.)

Standard Doclet Options

-d directory

Specifies the destination directory where javadoc saves the generated HTML files. (The “d”
means “destination.”) Omitting this option causes the files to be saved to the current directory. The
value directory can be absolute, or relative to the current working directory. As of 1.4, the
destination directory is automatically created when javadoc is run.

For example, the following generates the documentation for the package com.mypackage and
saves the results in the C: \user\doc\ directory:

C:> javadoc -d \user\doc com.mypackage
-use

Includes one “Use” page for each documented class and package. The page describes what
packages, classes, methods, constructors and fields use any API of the given class or package.
Given class C, things that use class C would include subclasses of C, fields declared as C, methods
that return C, and methods and constructors with parameters of type C.

For example, let's look at what might appear on the “Use” page for String. The getName ()
method in the java.awt.Font class returns type String. Therefore, getName () uses
String, and you will find that method on the "Use" page for String.

Note that this documents only uses of the AP, not the implementation. If a method uses String in
its implementation but does not take a string as an argument or return a string, that is not
considered a “use” of String.

You can access the generated “Use” page by first going to the class or package, then clicking on
the "Use" link in the navigation bar.

-version

Includes the @version text in the generated docs. This text is omitted by default. To tell what
version of the javadoc tool you are using, use the ~J-version option.

-author

Includes the @author text in the generated docs.
-splitindex

Splits the index file into multiple files, alphabetically, one file per letter, plus a file for any index
entries that start with non-alphabetical characters.

-windowtitle title

Specifies the title to be placed in the HTML <title> tag. This appears in the window title and
in any browser bookmarks (favorite places) that someone creates for this page. This title should
not contain any HTML tags, as the browser will not properly interpret them. Any internal
quotation marks within title may have to be escaped. If ~windowtitle is omitted, the Javadoc
tool uses the value of ~doctitle for this option.

C:> javadoc -windowtitle "Java 2 Platform" com.mypackage
-doctitle title

Specifies the title to be placed near the top of the overview summary file. The title will be placed
as a centered, level-one heading directly beneath the upper navigation bar. The title may contain
html tags and white space, though if it does, it must be enclosed in quotes. Any internal quotation
marks within title may have to be escaped.

C:> javadoc -doctitle "Java^{TM}" com.mypackage

-title title

This option no longer exists. It existed only in Beta versions of Javadoc 1.2. It has been renamed
to —~doctitle. This option is being renamed to make it clear that it defines the document title
rather than the window title.

-header header

Specifies the header text to be placed at the top of each output file. The header will be placed to
the right of the upper navigation bar. header may contain HTML tags and white space, though if it
does, it must be enclosed in quotes. Any internal quotation marks within header may have to be
escaped.

C:> javadoc -header "Java 2 Platform
vl.4" com.mypackage

-footer footer

Specifies the footer text to be placed at the bottom of each output file. The footer will be placed to
the right of the lower navigation bar. footer may contain html tags and white space, though if it
does, it must be enclosed in quotes. Any internal quotation marks within footer may have to be
escaped.

-bottom text

Specifies the text to be placed at the bottom of each output file. The text will be placed at the
bottom of the page, below the lower navigation bar. The text may contain HTML tags and white
space, though if it does, it must be enclosed in quotes. Any internal quotation marks within text
may have to be escaped.

-link extdocURL

Creates links to existing javadoc-generated documentation of external referenced classes. It takes
one argument:

extdocURL is the absolute or relative URL of the directory containing the external javadoc-
generated documentation you want to link to. Examples are shown below. The package-1list
file must be found in this directory (otherwise, use —1inkoffline). The javadoc tool reads the
package names from the package-list file and then links to those packages at that URL. When the
Javadoc tool is run, the extdocURL value is copied literally into the <A HREF> links that are
created. Therefore, extdocURL must be the URL to the directory, not to a file.

You can use an absolute link for extdocURL to enable your docs to link to a document on any
website, or can use a relative link to link only to a relative location. If relative, the value you pass
in should be the relative path from the destination directory (specified with -d) to the directory
containing the packages being linked to.

When specifying an absolute link you normally use an http: link. However, if you want to link to a
file system that has no web server, you can use a file: link -- however, do this only if everyone
wanting to access the generated documentation shares the same file system.

You can specify multiple —~1ink options in a given javadoc run to link to multiple documents.

Choosing between -linkoffline and -link - One or the other option is appropriate when linking to
an API document that is external to the current javadoc run.

e Use -link:
when using a relative path to the external API document, or
when using an absolute URL to the external API document, if your shell allows a
program to open a connection to that URL for reading.

e Use -linkoffline:
when using an absolute URL to the external API document, if your shell does not allow a
program to open a connection to that URL for reading. This can occur if you are behind a
firewall and the document you want to link to is on the other side.

Example using absolute links to the external docs - Let's say you want to link to the
java.lang, java.io and other Java 2 Platform packages at
http://java.sun.com/j2se/1.4/docs/api, The following command generates
documentation for the package com.mypackage with links to the Java 2 Platform packages.
The generated documentation will contain links to the Object class, for example, in the class trees.
(Other options, such as -~sourcepath and -d, are not shown.)

C:> javadoc -link http://java.sun.com/j2se/1.4/docs/api com.mypackage

Example using relative links to the external docs - Let's say you have two packages whose docs
are generated in different runs of the Javadoc tool, and those docs are separated by a relative path.
In this example, the packages are com.apipackage, an API, and com. spipackage, an SPI
(Service Provide Interface). You want the documentation to reside in
docs/api/com/apipackage and docs/spi/com/spipackage. Assuming the API
package documentation is already generated, and that docs is the current directory, you would
document the SPI package with links to the API documentation by running:

C:> javadoc -d ./spi -link ../api com.spipackage
Notice the —1ink argument is relative to the destination directory (docs/spi).

Details - The -link option enables you to link to classes referenced to by your code but not
documented in the current javadoc run. For these links to go to valid pages, you must know where
those HTML pages are located, and specify that location with extdocURL. This allows, for
instance, third party documentation to link to java . * documentation on
http://java.sun.com.

Omit the —11ink option for javadoc to create links only to API within the documentation it is
generating in the current run. (Without the —1 ink option, the Javadoc tool does not create links to
documentation for external references, because it does not know if or where that documentation
exists.)

This option can create links in several places in the generated documentation.

Another use is for cross-links between sets of packages: Execute javadoc on one set of packages,
then run javadoc again on another set of packages, creating links both ways between both sets.

How a Class Must be Referenced - For a link to an external referenced class to actually appear
(and not just its text label), the class must be referenced in the following way. It is not sufficient

for it to be referenced in the body of a method. It must be referenced in either an import statement
or in a declaration. Here are examples of how the class java.io.File can be referenced:

e Inany kind of import statement: by wildcard import, import explicitly by name, or
automatically import for java.lang. *. For example, this would suffice:

import java.io.*;

In 1.3.x and 1.2.x, only an explicit import by name works -- a wildcard import statement
does not work, nor does the automatic import java.lang. *.

e In adeclaration:

void foo(File f) {}

The reference and be in the return type or parameter type of a method, constructor, field,
class or interface, or in an implements, extends or throws statement.

An important corollary is that when you use the —1ink option, there may be many links that
unintentionally do not appear due to this constraint. (The text would appear without a hypertext
link.) You can detect these by the warnings they emit. The most innocuous way to properly
reference a class and thereby add the link would be to import that class, as shown above.

Package List - The -1 ink option requires that a file named package-list, which is generated by
the Javadoc tool, exist at the URL you specify with —1ink. The package-1ist file is a simple
text file that lists the names of packages documented at that location. In the earlier example, the
Javadoc tool looks for a file named package-1ist at the given URL, reads in the package
names and then links to those packages at that URL.

For example, the package list for the Java 2 Platform v1.4 API is located at
http://java.sun.com/j2se/1.4/docs/api/package-1list. and starts out as
follows:

java.applet

java.awt
java.awt.color
java.awt.datatransfer
java.awt.dnd
java.awt.event
java.awt.font

etc.

When javadoc is run without the -link option, when it encounters a name that belongs to an
external referenced class, it prints the name with no link. However, when the -link option is used,
the Javadoc tool searches the package-list file at the specified extdocURL location for that
package name. If it finds the package name, it prefixes the name with extdocURL.

In order for there to be no broken links, all of the documentation for the external references must
exist at the specified URLs. The Javadoc tool will not check that these pages exist -- only that the
package-list exists.

Multiple Links - You can supply multiple —1ink options to link to any number of external
generated documents. Javadoc 1.2 has a known bug, which prevents you from supplying more
than one -11ink command. This was fixed in 1.2.2.

Specify a different link option for each external document to link to:

C:> javadoc -link extdocURL1 -link extdocURL2 ... -link extdocURLn com.mypackage

where extdocURL1, extdocURL2, ... extdocURLn point respectively to the roots of
external documents, each of which contains a file named package-list.

Cross-links - Note that “bootstrapping” may be required when cross-linking two or more
documents that have not previously been generated. In other words, if package-list does not exist
for either document, when you run the Javadoc tool on the first document, the package-list will not
yet exist for the second document. Therefore, to create the external links, you must re-generate the
first document after generating the second document.

In this case, the purpose of first generating a document is to create its package-list (or you can
create it by hand it if you're certain of the package names). Then generate the second document
with its external links. The Javadoc tool prints a warning if a needed external package-list file does
not exist.

-linkoffline extdocURL packagelistLoc

This option is a variation of -1 ink; they both create links to javadoc-generated documentation
for external referenced classes. Use the ~1inkof f1ine option when linking to a document on
the web when the Javadoc tool itself is “offline” -- that is, it cannot access the document through a
web connection.

More specifically, use ~1inkoffline if the external document's package-list file is not
accessible or does not exist at the extdocURL location but does exist at a different location,
which can be specified by packageListLoc (typically local). Thus, if extdocURL is
accessible only on the World Wide Web, -1inkoffline removes the constraint that the
Jjavadoc tool have a web connection when generating the documentation.

Another use is as a “hack” to update docs: After you have run javadoc on a full set of packages,
then you can run javadoc again on only a smaller set of changed packages, so that the updated
files can be inserted back into the original set. Examples are given below.

The -1inkoffline option takes two arguments -- the first for the string to be embedded in the
<a href> links, the second telling it where to find package-list:

e extdocURL is the absolute or relative URL of the directory containing the external
javadoc-generated documentation you want to link to. If relative, the value should be the
relative path from the destination directory (specified with —d) to the root of the packages
being linked to. For more details, see extdocURL in the —~1ink option.

o packagelistLoc is the path or URL to the directory containing the package-1ist file
for the external documentation. This can be a URL (http: or file:) or file path, and
can be absolute or relative. If relative, make it relative to the current directory from where
javadoc was run. Do not include the package-1ist filename.

You can specify multiple -1inkoff1ine options in a given javadoc run. (Prior to 1.2.2, it could
be specified only once.)

Example using absolute links to the external docs - Let's say you want to link to the
java.lang, java.io and other Java 2 Platform packages at
http://java.sun.com/j2se/1.4/docs/api, but your shell does not have web access.
You could open the package-list file in a browser at
http://java.sun.com/j2se/1.4/docs/api/package-1list, save itto a local
directory, and point to this local copy with the second argument, packagelistLoc. In this
example, the package list file has been saved to the current directory ““. ”. The following command
generates documentation for the package com.mypackage with links to the Java 2 Platform
packages. The generated documentation will contain links to the Object class, for example, in the
class trees. (Other necessary options, such as ~sourcepath, are not shown.)

C:> javadoc -linkoffline http://java.sun.com/j2se/1l.4/docs/api . com.mypackage

Example using relative links to the external docs - It's not very common to use -
linkoffline with relative paths, for the simple reason that —11ink usually suffices. When
using -linkoffline, the package-1ist file is generally local, and when using relative
links, the file you are linking to is also generally local. So it is usually unnecessary to give a
different path for the two arguments to ~1inkoffline. When the two arguments are identical,
you can use —1ink. See the —11ink relative example.

Manually Creating a package-list File - If a package-list file does not yet exist, but you know
what package names your document will link to, you can create your own copy of this file by hand
and specify its path with packagelistLoc. An example would be the previous case where the
package list for com. spipackage did not exist when com. apipackage was first generated.
This technique is useful when you need to generate documentation that links to new external
documentation whose package names you know, but which is not yet published. This is also a way

of creating package-list files for packages generated with Javadoc 1.0 or 1.1, where package-list
files were not generated. Likewise, two companies can share their unpublished package-list files,
enabling them to release their cross-linked documentation simultaneously.

Linking to Multiple Documents - You can include -linkoffline once for each generated document
you want to refer to (each option is shown on a separate line for clarity):

C:> javadoc -linkoffline extdocURL1 packagelistLocl \
-linkoffline extdocURL2 packagelistLoc2 \

Updating docs - Another use for -1inkoffline option is useful if your project has dozens or
hundreds of packages, if you have already run javadoc on the entire tree, and now, in a separate
run, you want to quickly make some small changes and re-run javadoc on just a small portion of
the source tree. This is somewhat of a hack in that it works properly only if your changes are only
to doc comments and not to declarations. If you were to add, remove or change any declarations
from the source code, then broken links could show up in the index, package tree, inherited
member lists, use page, and other places.

First, you create a new destination directory (call it update) for this new small run. Let's say the
original destination directory was named html. In the simplest example, cd to the parent of html.
Set the first argument of —1inkoffline to the current directory “.” and set the second
argument to the relative path to html, where it can find package-list, and pass in only the package

names of the packages you want to update:
C:> javadoc -d update -linkoffline . html com.mypackage

When the javadoc tool is done, copy these generated class pages in update\com\package (not the
overview or index), over the original files in html\com\package.

-linksource

Creates an HTML version of each source file (with line numbers) and adds links to them from the
standard HTML documentation. Links are created for classes, interfaces, constructors, methods
and fields whose declarations are in a source file. Otherwise, links are not created, such as for
default constructors and generated classes.

This option exposes all private implementation details in the included source files, including
private classes, private fields, and the bodies of private methods, regardless of the -public, -
package, -protected and -private options. Unless you also use the -private option, not
all private classes or interfaces will necessarily be accessible via links.

Each link appears on the name of the identifier in its declaration. For example, the link to the
source code of the Button class would be on the word “Button™:

public class Button
extends Component
implements Accessible

and the link to the source code of the getLabel () method in the Button class would be on the
word “getLabel”:

public String getLabel ()
-group groupheading packagepattern:packagepattern:...

Separates packages on the overview page into whatever groups you specify, one group per table.
You specify each group with a different -group option. The groups appear on the page in the order
specified on the command line; packages are alphabetized within a group. For a given -group
option, the packages matching the list of packagepattern expressions appear in a table with the
heading groupheading.

e groupheading can be any text, and can include white space. This text is placed in the
table heading for the group.

e packagepattern can be any package name, or can be the start of any package name
followed by an asterisk (*). The asterisk is a wildcard meaning “match any characters”.
This is the only wildcard allowed. Multiple patterns can be included in a group by
separating them with colons (:).

NOTE: If using an asterisk in a pattern or pattern list, the pattern list must be inside quotes, such
as “java.lang*:java.util”

If you do not supply any —group option, all packages are placed in one group with the heading
“Packages”. If the all groups do not include all documented packages, any leftover packages
appear in a separate group with the heading “Other Packages”.

For example, the following option separates the four documented packages into core, extension
and other packages. Notice the trailing “dot” does not appear in “java.lang*” -- including the
dot, such as “java.lang.*” would omit the java.lang package.

C:> javadoc -group "Core Packages" "java.lang*:java.util"
-group "Extension Packages" "javax.*"
java.lang java.lang.reflect java.util javax.servlet java.new

This results in the groupings:
Core Packages
java.lang
java.lang.reflect
java.util

Extension Packages
javax.servlet

Other Packages
java.new

-nodeprecated

Prevents the generation of any deprecated API at all in the documentation. This does what -
nodeprecatedlist does, plus it does not generate any deprecated API throughout the rest of

the documentation. This is useful when writing code and you don’t want to be distracted by the
deprecated code.

-nodeprecatedlist

Prevents the generation of the file containing the list of deprecated APIs (deprecated-
list.html) and the link in the navigation bar to that page. (However, javadoc continues to
generate the deprecated API throughout the rest of the document.) This is useful if your source
code contains no deprecated API, and you want to make the navigation bar cleaner.

-nosince

Omits from the generated docs the “Since” sections associated with the @since tags.

-notree

Onmits the class/interface hierarchy from the generated docs. The hierarchy is produced by default.

-noindex

Onmits the index from the generated docs. The index is produced by default.

-nohelp
Omits the HELP link in the navigation bars at the top and bottom of each page of output.
-nonavbar

Prevents the generation of the navigation bar, header and footer, otherwise found at the top and
bottom of the generated pages. Has no affect on the “bottom” option. The —-nonavbar option is
useful when you are interested only in the content and have no need for navigation, such as
converting the files to PostScript or PDF for print only.

-helpfile path\filename
Specifies the path of an alternate help file path\filename that the HELP link in the top and
bottom navigation bars link to. Without this option, the javadoc tool automatically creates a help
file help-doc.html that is hard-coded in the Javadoc tool. This option enables you to override this
default. The filename can be any name and is not restricted to help-doc.html -- the Javadoc tool
will adjust the links in the navigation bar accordingly. For example:
C:> javadoc -helpfile C:\user\myhelp.html java.awt
-stylesheetfile path\filename
Specifies the path of an alternate HTML stylesheet file. Without this option, the Javadoc tool
automatically creates a stylesheet file stylesheet.css that is hard-coded in the javadoc tool. This

option enables you to override this default. The filename can be any name and is not restricted to
stylesheet.css. For example:

C:> javadoc -stylesheetfile C:\user\mystylesheet.css com.mypackage
-serialwarn
Generates compile-time warnings for missing @serial tags. By default, Javadoc 1.2.2 (and later
versions) generates no serial warnings. (This is a reversal from earlier versions.) Use this option to

display the serial warnings, which helps to properly document default serializable fields and
writeExternal methods.

-charset name
Specifies the HTML character set for this document. For example:
C:> javadoc -charset "iso-8859-1" mypackage

would insert the following line in the head of every generated page:

<META http-equiv="Content-Type" content="text/html; charset=is0-8859-1">
This META tag is described in the HTML standard. (4197265 and 4137321)

-docencoding name
Specifies the encoding of the generated HTML files.

-source 1.4

Necessary to enable javadoc to handle assertions present in J2SE v 1.4 source code. This option
documents code that compiles using "javac -source 1.4".

-tag tagname:Xaoptcmf:"taghead"

Enables javadoc to interpret a simple, one-argument custom standalone tag @tagname in doc
comments. So the javadoc tool can “spell-check” tag names, it is important to include a -
tag option for every custom tag that is present in the source code, disabling (with X) those that
are not being output in the current run.

The —tag option outputs the tag’s heading taghead in bold, followed on the next line by the text
from its single argument, as shown in the example below. Like any standalone tag, this argument's
text can contain inline tags, which are also interpreted. The output is similar to standard one-
argument tags, such as @return and @author.

Placement of tags - The Xaoptemf part of the argument determines where in the source code the
tag is allowed to be placed, and whether the tag can be disabled (using X). You can supply either
a, to allow the tag in all places, or any combination of the other letters:

disable tagqg)

all)

overview)

packages)

types, that is classes and interfaces)
constructors)

methods)

fields)

3 QT oL X

Examples of single tags - An example of a tag option for a tag that that can be used anywhere in
the source code is:

-tag todo:a:"To Do:"
If you wanted @todo to be used only with constructors, methods and fields, you would use:
-tag todo:cmf:"To Do:"

Notice the last colon (:) above is not a parameter separator, but is part of the heading text (as
shown below). You would use either tag option for source code that contains the tag @t odo, such
as:

@todo The documentation for this method needs work.
This line would produce output something like:

To Do:
The documentation for this method needs work.

Spell-checking tag names (Disabling tags) - Some developers put custom tags in the source code
that they don't always want to output. In these cases, it is important to list all tags that are present
in the source code, enabling the ones you want to output and disabling the ones you don’t want to
output. The presence of X disables the tag, while its absence enables the tag. This gives the
Jjavadoc tool enough information to know if a tag it encounters is unknown, probably the results of
a typo or a misspelling. It prints a warning in these cases.

You can add X to the placement values already present, so that when you want to enable the tag,
you can simply delete the X. For example, if @todo is a tag that you want to suppress on output,
you would use:

-tag todo:Xcmf:"To Do:"
or, if you'd rather keep it simple:

-tag todo:X

The syntax —tag todo:X works even if @todo is defined by a taglet.

Order of tags - The order of the —tag (and -taglet) options determine the order the tags are
output. You can mix the custom tags with the standard tags to intersperse them. The tag options
for standard tags are placeholders only for determining the order -- they take only the standard
tag’s name. (Subheadings for standard tags cannot be altered.) This is illustrated in the following
example.

If —tag is missing, then the position of —taglet determines its order. If they are both present,
then whichever appears last on the command line determines its order. (This happens because the
tags and taglets are processed in the order that they appear on the command line. For example, if -
taglet and -tag both have the name “todo”, the one that appears last on the command line will
determine its order.

Example of a complete set of tags - This example inserts “To Do” after “Parameters” and
before “Throws” in the output. By using “X”, it also specifies that @example is a tag that might
be encountered in the source code that should not be output during this run. Notice that if you use
@argfile, you can put the tags on separate lines in an argument file like this (no line
continuation characters needed):

-tag param

-tag return

-tag todo:a:"To Do:"
-tag throws

-tag see

-tag example:X

When javadoc parses the doc comments, any tag encountered that is neither a standard tag nor
passed in with —tag or —taglet is considered unknown, and a warning is thrown.

The standard tags are initially stored internally in a list in their default order. Whenever -tag
options are used, those tags get appended to this list -- standard tags are moved from their default
position. Therefore, if a —tag option is omitted for a standard tag, it remains in its default
position.

Avoiding Conflicts - If you want to slice out your own namespace, you can use a dot-separated
naming convention similar to that used for packages: com.mycompany . todo. Sun will
continue to create standard tags whose names do not contain dots. Any tag you create will override
the behavior of a tag by the same name defined by Sun. In other words, if you create a tag or taglet
@todo, it will always have the same behavior you define, even if Sun later creates a standard tag
of the same name.

You can also create more complex standalone tags, or custom inline tags with the —taglet
option.

-taglet class

Specifies the class file that starts the taglet used in generating the documentation for that tag. Use
the fully-qualified name for class. This taglet also defines the number of text arguments that the
custom tag has. The taglet accepts those arguments, processes them, and generates the output. For
extensive documentation with example taglets, see:

Taglet Overview
Taglets are useful for standalone or inline tags. They can have any number of arguments and

implement custom behavior, such as making text bold, formatting bullets, writing out the text to a
file, or starting other processes.

Taglets can only determine where a tag should appear and in what form. All other decisions are
made by the doclet. So a taglet cannot do things such as remove a class name from the list of
included classes. However, it can execute side effects, such as printing the tag’s text to a file or
triggering another process.

Use the ~tagletpath option to specify the path to the taglet. Here is an example that inserts the
“To Do” taglet after “Parameters” and ahead of “Throws” in the generated pages:

-taglet com.sun.tools.doclets.ToDoTaglet
-tagletpath /home/taglets

-tag return

-tag param

-tag todo

-tag throws

-tag see

Alternatively, you can use the -taglet option in place of its -tag option, but that may be harder to
read.

-tagletpath tagletpathlist

Specifies the search paths for finding taglet class files (. class). The tagletpathlist can contain
multiple paths by separating them with a colon (:). The javadoc tool will search in all
subdirectories of the specified paths.

-subpackages packagel:package2:...

Generates documentation from source files in the specified packages and recursively in their
subpackages. This option is useful when adding new subpackages to the source code, as they are
automatically included. Each package is any top-level package (java) or fully qualified
subpackage (javax.swing), and does not need to contain source files. Wildcards are not
needed or allowed. Use —sourcepath to specify where to find the packages. For example:

C:> javadoc -d docs -sourcepath C:\user\src -subpackages Jjava:javax.swing

This command generates documentation for packages named “java” and “javax.swing” and
all their subpackages.
There is also an option to exclude subpackages as it traverses the subpackages.

-exclude packagenamel:packagename?2:...

Unconditionally excludes the specified packages and their subpackages from the list formed by -
subpackages. It excludes those packages even if they would otherwise be included by some
previous or later —subpackages option. For example:

C:> javadoc -sourcepath C:\user\src -subpackages java -exclude java.net:java.lang

would include java.io, java.util, and java.math (among others), but would exclude
packages rooted at java.net and java.lang. Notice this excludes java.lang.ref,a
subpackage of java.lang).

-breakiterator

Uses the sentence break iterator to determine the end of the first sentence. We plan to change the
algorithm for determining the end of the first sentence in the next major feature release -- the -
breakiterator option uses this new algorithm. We recommend you use this option whenever
running version 1.4 so that your transition to the next major release will be seamless.

In 1.2 and 1.3, the java.text.BreakIterator class was used to determine the end of
sentence for all languages but English. Therefore, the ~-breakiterator option has an effect
only for English. English had its own algorithm, which looked for a period followed by a space.

When -breakiterator is omitted, the end of the first sentence is unchanged from 1.2 and 1.3,
and warnings are emitted displaying where there would be a difference.

Differences in the algorithms show up in English as follows:

e Old algorithm - Stops at a period followed by a space or a paragraph-level HTML tag,
such as <P>.

e New algorithm - Stops at a period, question mark or exclamation mark followed by a
space if the next word starts with a capital letter. This is meant to handle most
abbreviations (such as “Serial no. is valid”, but won't handle “Mr. Smith”). Won't stop at
HTML tags or sentences that begin with numbers or symbols.

-docfilessubdirs

Enables deep copying of “doc-files” directories. In other words, subdirectories and all contents are
recursively copied to the destination. For example, the directory doc-
files/example/images and all its contents would now be copied. There is also an option to
exclude subdirectories.

-excludedocfilessubdir namel:name2...

Excludes any “doc-files” subdirectories with the given names. This prevents the copying of SCCS
and other source-code-control subdirectories.

-noqualifier all | packagenamel:packagename2:...

Omits qualifying package name from ahead of class names in output. The argument to -
noqualifier is either “all” (all package qualifiers are omitted) or a colon-separate list of
packages, with wildcards, to be removed as qualifiers. The package name is removed from places
where class or interface names appear.
The following example omits all package qualifiers:

-noqualifier all
The following example omits “java.lang” and “java.io” package qualifiers:

-noqualifier java.lang:java.io

The following example omits package qualifiers starting with "java", and “com. sun”
subpackages (but not “javax”):

-noqualifier java.*:com.sun.*
Where a package qualifier would appear due to the above behavior, the name can be suitably
shortened -- see How a name is displayed. This rule is in effect whether or not -noqualifier

is used.

-nocomment
Suppress the entire comment body, including the description and all tags, generating only

declarations. This option enables re-using source files originally intended for a different purpose,
to produce a skeleton perhaps for a new project.

Examples

	Overview
	Description
	Terminology
	Javadoc Source Files
	Generated Files
	Java Doclets
	What is a Doc Comment?
	Doc Comment Tags
	Where Doc Comment Tags Can Be Used
	Doc Comment Tags Recognized by javadoc
	Doc Comments and Inheritance
	
	
	
	
	
	
	Tag Blocks

	Package Specification

