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Abstract

This paper presents a new algorithm for mobile robot lo-
calization, called Monte Carlo Localization (MCL). MCL
is a version of Markov localization, a family of probabilis-
tic approaches that have recently beenapplied with great
practical success. However, previous approaches were ei-
ther computationally cumbersome (such as grid-based ap-
proaches that represent the state space by high-resolution
3D grids), or had to resort to extremely coarse-grained res-
olutions. Our approach is computationally efficient while
retaining the ability to represent (almost) arbitrary dis-
tributions. MCL applies sampling-based methods for ap-
proximating probability distributions, in a way that places
computation “ where needed.” The number of samples is
adapted on-line, thereby invoking large sample sets only
when necessary. Empirical results illustrate that MCL yields
improved accuracy while requiring an order of magnitude
less computation when compared to previous approaches. It
is also much easier to implement.

Introduction
Throughout the last decade, sensor-based localization has
been recognized as a key problem in mobile robotics (Cox
1991; Borenstein, Everett, & Feng 1996). Localization is a
version of on-line temporal state estimation, where a mo-
bile robot seeks to estimate its position in a global coor-
dinate frame. The localization problem comes in two fla-
vors: global localizationand position tracking. The sec-
ond is by far the most-studied problem; here a robot knows
its initial position and “only” has toaccommodate small er-
rors in its odometry as it moves. The global localization
problem involves a robot which is not told its initial po-
sition; hence, it has to solve a much more difficult local-
ization problem, that of estimating its position from scratch
(this is sometimes referred to as thehijacked robot problem
(Engelson 1994)). The ability to localize itself—both lo-
cally and globally—played an important role in a collection
of recent mobile robot applications (Burgardet al. 1998a;
Endres, Feiten, & Lawitzky 1998; Kortenkamp, Bonasso, &
Murphy 1997).

While the majority of early work focused on the track-
ing problem, recently several researchers have developed

what is now a highly successful family of approaches ca-
pable of solving both localization problems:Markov local-
ization(Nourbakhsh, Powers, & Birchfield 1995; Simmons
& Koenig 1995; Kaelbling, Cassandra, & Kurien 1996;
Burgardet al. 1996). The central idea of Markov localiza-
tion is to represent the robot’s belief by a probability dis-
tribution over possible positions, and use Bayes rule and
convolution to update the belief whenever the robot senses
or moves. The idea of probabilistic state estimation goes
back to Kalman filters (Gelb 1974; Smith, Self, & Cheese-
man 1990), which use multivariate Gaussians to represent
the robot’s belief. Because of the restrictive nature of Gaus-
sians (they can basically represent one hypothesis only anno-
tated by its uncertainty) Kalman-filters usually are only ap-
plied to position tracking. Markov localization employs dis-
crete, butmulti-modalrepresentations for representing the
robot’s belief, hence can solve the global localization prob-
lem. Because of the real-valued and multi-dimensional na-
ture of kinematic state spaces these approaches can onlyap-
proximatethe belief, and accurate approximation usually re-
quires prohibitive amounts of computation and memory.

In particular, grid-based methods have been devel-
oped that approximate the kinematic state space by fine-
grained piecewise constant functions (Burgardet al. 1996).
For reasonably-sized environments, these approaches of-
ten require memory in the excess of 100MB, and high-
performance computing. At the other extreme, various re-
searchers have resorted to coarse-grainedtopologicalrepre-
sentations, whose granularity is often an order of magnitude
lower than that of the grid-based approach. When high reso-
lution is needed (see e.g., (Foxet al. 1998), who uses local-
ization to avoid collisions with static obstacles that cannot
be detected by sensors), such approaches are inapplicable.

In this paper we presentMonte Carlo Localization (in
short: MCL). Monte Carlo methods were introduced in the
Seventies (Handschin 1970), and recently rediscovered inde-
pendently in the target-tracking (Gordon, Salmond, & Smith
1993), statistical (Kitagawa 1996) and computer vision liter-
ature (Isard & Blake 1998), and they have also be applied in
dynamic probabilistic networks (Kanazawa, Koller, & Rus-
sell 1995). MCL uses fast sampling techniques to represent
the robot’s belief. When the robot moves or senses, impor-



tance re-sampling (Rubin 1988) is applied to estimate the
posterior distribution. An adaptive sampling scheme (Koller
& Fratkina 1998), which determines the number of samples
on-the-fly, is employed to trade-off computation and accu-
racy. As a result, MCL uses many samples during global
localization when they are most needed, whereas the sample
set size is small during tracking, when the position of the
robot is approximately known.

By using a sampling-based representation, MCL has
several key advantages over earlier work in the field:
1. In contrast to existing Kalman filtering based techniques,

it is able to represent multi-modal distributions and thus
canglobally localize a robot.

2. It drastically reduces the amount of memory required
compared to grid-based Markov localization and can in-
tegrate measurements at a considerably higher frequency.

3. It is moreaccuratethan Markov localization with a fixed
cell size, as the state represented in the samples is not
discretized.

4. It is much easier to implement.

Markov Localization
This section briefly outlines the basic Markov localization
algorithm upon which our approach is based. The key
idea of Markov localization—which has recently been ap-
plied with great success at various sites (Nourbakhsh, Pow-
ers, & Birchfield 1995; Simmons & Koenig 1995; Kael-
bling, Cassandra, & Kurien 1996; Burgardet al. 1996;
Fox 1998)—is to compute a probability distribution over all
possible positions in the environment. Letl = hx; y; �i de-
note a position in the state space of the robot, wherex and
y are the robot’s coordinates in a world-centered Cartesian
reference frame, and� is the robot’s orientation. The distri-
butionBel(l) expresses the robot’s belief for being at posi-
tion l. Initially, Bel(l) reflects the initial state of knowledge:
if the robot knows its initial position,Bel(l) is centered on
the correct position; if the robot does not know its initial po-
sition, Bel(l) is uniformly distributed to reflect the global
uncertainty of the robot. As the robot operates,Bel(l) is
incrementally refined.

Markov localization applies two different probabilistic
models to updateBel(l), an action model to incorporate
movements of the robot intoBel(l) and a perception model
to update the belief upon sensory input:

Robot motion is modeled by a conditional probability
P (l j l0; a) (a kernel), specifying the probability that a mea-
sured movement actiona, when executed atl0, carries the
robot tol. Bel(l) is then updatedaccording to the following
general formula, commonly used in Markov chains (Chung
1960):

Bel(l)  �
Z

P (l j l0; a) Bel(l0) dl0 (1)

The termP (l j l0; a) represents a model of the robot’s kine-
matics, whose probabilistic componentaccounts for errors

in odometry. Following (Burgardet al. 1996), we assume
odometry errors to be distributed normally.

Sensor readingsare integrated with Bayes rule. Lets
denote a sensor reading andP (s j l) the likelihood of per-
ceivings given that the robot is at positionl, thenBel(l) is
updatedaccording to the following rule:

Bel(l)  � � P (s j l) Bel(l) (2)

Here� is a normalizer, which ensures thatBel(l) integrates
to 1.

Strictly speaking, both update steps are only applicable if
the environment isMarkovian, that is, if past sensor read-
ings are conditionally independent of future readings given
the true position of the robot. Recent extensions tonon-
Markovian environments (Foxet al. 1998) can easily be
stipulated to the MCL approach; hence, throughout this pa-
per will assume that the environment is Markovian and will
not pay further attention to this issue.

Prior Work
Existing approaches to mobile robot localization can be dis-
tinguished by the way they represent the state space of the
robot.

Kalman filter-based techniques.Most of the earlier ap-
proaches to robot localization apply Kalman filters (Kalman
1960). The vast majority of these approaches is based on the
assumption that the uncertainty in the robot’s position can
be represented by a unimodal Gaussian distribution. Sen-
sor readings, too, are assumed to map to Gaussian-shaped
distributions over the robot’s position. For these assump-
tions, Kalman filters provide extremely efficient update rules
that can be shown to be optimal (relative to the assump-
tions) (Maybeck 1979). Kalman filter-based techniques
(Leonard & Durrant-Whyte 1992; Schiele & Crowley 1994;
Gutmann & Schlegel 1996) have proven to be robust and ac-
curate for keeping track of the robot’s position. However,
since these techniques do not represent multi-modal prob-
ability distributions, which frequently occur during global
localization. In practice, localization approaches using
Kalman filters typically require that the starting position of
the robot is known. In addition, Kalman filters rely on sensor
models that generate estimates with Gaussian uncertainty—
which is often unrealistic.

Topological Markov localization. To overcome these
limitations, different approaches have used increasingly
richer schemes to represent uncertainty, moving beyond the
Gaussian density assumption inherent in the vanilla Kalman
filter. These different methods can be roughly distinguished
by the type of discretization used for the representation of
the state space. In (Nourbakhsh, Powers, & Birchfield1995;
Simmons & Koenig 1995; Kaelbling, Cassandra, & Kurien
1996), Markov localization is used for landmark-based cor-
ridor navigation and the state space is organized according
to the coarse, topological structure of the environment. The



coarse resolution of the state representation limits the accu-
racy of the position estimates. Topological approaches typi-
cally give only a rough sense as to where the robot is.

Grid-based Markov localization. To deal with multi-
modal and non-Gaussian densities at a fine resolution (as
opposed to the coarser discretization in the above methods),
grid-based approaches perform numerical integration over
an evenly spaced grid of points (Burgardet al.1996; 1998b;
Fox 1998). This involves discretizing the interesting part of
the state space, and use it as the basis for an approxima-
tion of the state space density, e.g. by a piece-wise constant
function. Grid-based methods are powerful, but suffer from
excessive computational overhead anda priori commitment
to the size and resolution of the state space. In addition, the
resolution and thereby also the precision at which they can
represent the state has to be fixed beforehand. The computa-
tional requirements have an effect on accuracy as well, as not
all measurements can be processed in real-time, and valu-
able information about the state is thereby discarded. Re-
cent work (Burgardet al.1998b) has begun to address some
of these problems, usingoct-treesto obtain a variable resolu-
tion representation of the state space. This has the advantage
of concentrating the computation and memory usage where
needed, and addresses the limitations arising from fixed res-
olutions.

Monte Carlo Localization
Sample-Based Density Approximation

MCL is a version of sampling/importance re-sampling (SIR)
(Rubin 1988). It is known alternatively as the bootstrap
filter (Gordon, Salmond, & Smith 1993), the Monte-Carlo
filter (Kitagawa 1996), the Condensation algorithm (Is-
ard & Blake 1998), or the survival of the fittest algo-
rithm (Kanazawa, Koller, & Russell 1995). All these meth-
ods are generically known asparticle filters, and a discus-
sion of their properties can be found in (Doucet 1998).

The key idea underlying all this work is to represent the
posterior beliefBel(l) by a set ofN weighted, random sam-
ples orparticlesS = fsi j i = 1::Ng. A sample set consti-
tutes a discrete approximation of a probability distribution.
Samples in MCL are of the type

hhx; y; �i; pi (3)

wherehx; y; �i denote a robot position, andp � 0 is a nu-
merical weighting factor, analogous to a discrete probability.
For consistency, we assume

PN

n=1
pn = 1.

In analogy with the general Markov localization approach
outlined in the previous section, MCL proceeds in two
phases:

Robot motion. When the robot moves, MCL generatesN
new samples that approximate the robot’s position after the
motion command. Each sample is generated byrandomly
drawing a sample from the previously computed sample set,
with likelihood determined by theirp-values. Letl0 denote

the position of this sample. The new sample’sl is then gener-
ated by generating a single, random sample fromP (l j l0; a),
using the actiona as observed. Thep-value of the new sam-
ple isN�1.

10 meters

Start location

Fig. 1: Sampling-based approximation of the position belief for a
non-sensing robot.

Figure 1 shows the effect of this sampling technique, start-
ing at an initial known position (bottom center) and exe-
cuting actions as indicated by the solid line. As can be
seen there, the sample sets approximate distributions with
increasing uncertainty, representing the gradual loss of posi-
tion information due to slippage and drift.

Sensor readingsare incorporated by re-weighting the
sample set, in a way that implements Bayes rule in Markov
localization. More specifically, lethl; pi be a sample. Then

p  � � P (s j l) (4)

wheres is the sensor measurement, and� is a normalization
constant that enforces

PN

n=1
pn = 1. The incorporation of

sensor readings is typically performed in two phases, one
in which p is multiplied byP (s j l), and one in which the
variousp-values are normalized. An algorithm to perform
this re-sampling process efficiently in O(N) time is given in
(Carpenter, Clifford, & Fernhead 1997).

In practice, we have found it useful to add a small num-
ber of uniformly distributed, random samples aftereach es-
timation step. Formally, this is legitimate because the SIR
methodology (Rubin 1988) canaccommodate arbitrary dis-
tributions for sampling as long as samples are weighted ap-
propriately (using the factorp), and as long as the distribu-
tion from which samples are generated is non-zero at places
where the distribution that is being approximated is non-
zero—which is actually the case for MCL. The added sam-
ples are essential for relocalization in the rare event that the
robot loses track of its position. Since MCL uses finite sam-
ple sets, it may happen that no sample is generated close to
the correct robot position. In such cases, MCL would be un-
able to re-localize the robot. By adding a small number of
random samples, however, MCL can effectively re-localize
the robot, as documented in the experimental results section
of this paper.
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Fig. 2: Global localization: Initialization. Fig. 3: Ambiguity due to symmetry. Fig. 4: Successful localization.

Properties of MCL

A nice property of the MCL algorithm is that it can uni-
versally approximate arbitrary probability distributions. As
shown in (Tanner 1993), the variance of the importance sam-
pler converges to zero at a rate of1=

p
N (under condi-

tions that are true for MCL). The sample set size naturally
trades off accuracy and computational load. The true advan-
tage, however, lies in the way MCL places computational
resources. By sampling in proportion to likelihood,MCL fo-
cuses its computational resources on regions with high like-
lihood, where things really matter.

MCL is an online algorithm. It lends itself nicely to an
any-time implementation (Dean & Boddy 1988; Zilberstein
& Russell 1995). Any-time algorithms can generate an an-
swer atany time; however, the quality of the solution in-
creases over time. The sampling step in MCL can be termi-
nated at any time. Thus, when a sensor reading arrives, or an
action is executed, sampling is terminated and the resulting
sample set is used for the next operation.

Adaptive Sample Set Sizes

In practice, the number of samples required to achieve a cer-
tain level of accuracy varies drastically. During global lo-
calization, the robot is completely ignorant as to where it is;
hence, it’s belief uniformly covers its full three-dimensional
state space. During position tracking, on the other hand, the
uncertainty is typically small and often focused on lower-
dimensional manifolds. Thus, many more samples are
needed during global localization to approximate the true
density with high accuracy, than are needed for position
tracking.

MCL determines the sample set size on-the-fly. As
in (Koller & Fratkina 1998), the idea is to use the divergence
of P (l) andP (l j s), the beliefbeforeand after sensing,
to determine the sample sets. More specifically, both mo-
tion data and sensor data is incorporated in a single step, and
sampling is stopped whenever the sum of weightsp (before
normalization!) exceeds a threshold�. If the position pre-
dicted by odometry is well in tune with the sensor reading,
each individualp is large and the sample set remains small.
If, however, the sensor reading carries a lot of surprise, as
is typically the case when the robot is globally uncertain or
when it lost track of its position, the individualp-values are
small and the sample set is large.

Our approach directly relates to the well-known property
that the variance of the importance sampler is a function
of the mismatch of the sampling distribution (in our case
P (l)) and the distribution that is being approximated with
the weighted sample (in our caseP (l j s)) (Tanner 1993).
The less these distributions agree, the larger the variance
(approximation error). The idea is here to compensate such
error by larger sample set sizes, to obtain approximately uni-
form error.

A Graphical Example
Figures 2 to 4 illustrate MCL in practice. Shown there is a
series of sample sets (projected into 2D) generated during
global localization of our robot RHINO (Figure 5), as it op-
erates in an office building. In Figure 2, the robot is globally
uncertain; hence the samples are spread uniformly through
the free-space. Figure 3 shows the sample set after approx-
imately 1 meter of robot motion, at which point MCL has
disambiguated the robot’s position up to a single symmetry.
Finally, after another 2 meters of robot motion, the ambigu-
ity is resolved, the robot knows where it is. The majority of
samples is now centered tightly around the correct position,
as shown in Figure 4.

Experimental Results
To evaluate the utility of sampling in localization, we thor-
oughly tested MCL in a range of real-world environments,
applying it to three different types of sensors (cameras,
sonar, and laser proximity data). The two primary results
are:

1. MCL yields significantly more accurate localization
results than the most accurate previous Markov localiza-
tion algorithm, while consuming an order of magnitude
less memory and computational resources. In some
cases, MCL reliably localizes the robot whereas previous
methods fail.

2. By and large, adaptive sampling performs equally well
as MCL with fixed sample sets. In scenarios involving a
large range of different uncertainties (global vs. local),
however, adaptive sampling is superior to fixed sample
sizes.
Our experiments have been carried out using several B21,

B18, and Pioneer robots manufactured by ISR/RWI, shown
in Figure 5. These robots are equipped with arrays of sonar



Fig. 5: Four of the robots used for testing: Rhino, Minerva, Robin,
and Marian.

sensors (from 7 to 24), one or two laser range finders, and
in the case of Minerva, shown in Figure 5, a B/W camera
pointed at the ceiling. Even though all experimental results
discussed here use pre-recorded data sets (to facilitate the
analysis), all evaluations have been performed strictly un-
der run-time conditions (unless explicitly noted). In fact, we
have routinely ran cooperative teams of mobile robots using
MCL for localization (Foxet al. 1999).

Comparison to Grid-Based Localization

The first series of experiments characterizes the different ca-
pabilities of MCL and compares it to grid-based Markov lo-
calization, which presumably is the most accurate Markov
localization technique to date (Burgardet al. 1996; 1998b;
Fox 1998).
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Fig. 6: Accuracy of (a) grid-based Markov localization using
different spatial resolutions and (b) MCL for different numbers of

samples (log scale).

Figure 6 (a) plots the localization accuracy for grid-based
localization as a function of the grid resolution. These
results were obtained using data recorded in the environ-
ment shown in Figure 2. They are nicely suited for our
experiments because the exact same data has already been
used to compare different localization approaches, includ-
ing grid-based Markov localization (which was the only one
that solved the global localization problem) (Gutmannet
al. 1998). Notice that the results for grid-based localiza-
tion shown in Figure 6 were not generated in real-time.As
shown there, the accuracy increases with the resolution of
the grid, both for sonar (solid line) and for laser data (dashed
line). However, grid sizes below 8 cm do not permit updat-
ing in real-time, even when highly efficient, selective up-
date schemes are used (Fox, Burgard, & Thrun 1999). Re-
sults for MCL with fixed sample set sizes are shown in Fig-

ure 6 (b). These results have been generated using real-
time conditions. Here very small sample sets are disadvan-
tageous, since they infer too large an error in the approxi-
mation. Large sample sets are also disadvantageous, since
processing them requires too much time and fewer sensor
items can be processed in real-time. The “optimal” sam-
ple set size, according to Figure 6 (b), is somewhere be-
tween 1,000 and 5,000 samples. Grid-based localization, to
reach the same level of accuracy, has to use grids with 4cm
resolution—which is infeasible given even our best comput-
ers.

In comparison, the grid-based approach, with a resolu-
tion of 20 cm, requires almost exactly ten times as much
memory when compared to MCL with 5,000 samples. Dur-
ing global localization, integrating a single sensor scan re-
quires up to 120 seconds using the grid-based approach,
whereas MCL consumes consistently less than 3 seconds
under otherwise equal conditions. Once the robot has been
localized globally, however, grid-based localization updates
grid-cellsselectivelyas described in (Burgardet al. 1998b;
Fox 1998), and both approaches are about equally fast.

Vision-based Localization

To test MCL in extreme situations, we evaluated it in a popu-
lated public place. During a two-week exhibition, our robot
Minerva was employed as a tour-guide in the Smithsonian’s
Museum of Natural History (Thrunet al. 1999). To aid
localization, Minerva is equipped with a camera pointed to-
wards the ceiling. Figure 7 shows a mosaic of the museum’s
ceiling, constructed using a method described in (Thrunet
al. 1999). The data used here is the most difficult data set
in our possession, as the robot traveled with speeds of up to
163 cm/sec. Whenever it entered or left the carpeted area in
the center of the museum, it crossed a 2cm bump which in-
troduced significant errors in the robot’s odometry. Figure 8
shows the path measured by Minerva’s odometry.

When only using vision information, grid-based local-
ization fails to track the robotaccurately. This is because
the computational overhead makes it impossible to incorpo-
rate sufficiently many images. MCL, however, succeeded in
globally localizing the robot, and tracking the robot’s posi-
tion (see also (Dellaertet al. 1999a)). Figure 9 shows the
path estimated by our MCL technique. Although the local-
ization error is sometimes above 1 meter, the system is able
to keep track of multiplehypotheses and thus to recover from
localization errors. The grid-based Markov localization sys-
tem, however, was not able to track the whole 700m long
path of the trajectory. In all our experiments, which were
carried out under real-time conditions, the grid-based tech-
nique quickly lost track of the robot’s position (which, as
was verified, would not be the case if the grid-based ap-
proach was given unlimited computational power). These
results document that MCL is clearly superior to our previ-
ous grid-based approach.



Fig. 7: Ceiling map of the NMAH Fig. 8: Odometry information recorded by
Minerva on a 700 m long trajectory

Fig. 9: Trajectory estimated given the ceiling
map and the center pixels of on-line images.

Adaptive Sampling
Finally, we evaluated the utility of MCL’sadaptiveapproach
to sampling. In particular, were were interested in determin-
ing the relative merit of the adaptive sampling scheme, if
any, over a fixed, static sample set (as used in some of the
experiments above and in an earlier version of MCL (Del-
laert et al. 1999b)). In a final series of experiments, we
applied MCL with adaptive and fixed sample set sizes us-
ing data recorded with Minerva in the Smithsonian museum.
Here we use the laser range data instead of the vision data,
to illustrate that MCL also works well with laser range data
in environments as challenging as the one studied here.
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Fig. 10: Localization error for MCL with fixed sample set sizes
(top figure) and adaptive sampling (bottom line)

In the first set of experiments we tested the ability of MCL
to track the robot as it moved through the museum. In this
case it turned out that adaptive sampling has no significant
impact on the tracking ability of the Monte Carlo Localiza-
tion. This result is not surprising since during tracking the
position of the robot is concentrated on a small area.

We then evaluated the influence of adapting the sample
size on the ability toglobally localize the robot, and to re-
cover from extreme localization failure. For the latter, we
manually introduced severe errors into the data, to test the
robustness of MCL in the extreme. In our experiments we
“tele-ported” the robot at random points in time to other lo-
cations. Technically, this was done by changing the robot’s
orientation by 180� 90 degrees and shifting it by�200 cm,
without letting the robot know. These perturbations were in-
troduced randomly, with a probability of0:01 per meter of
robot motion. Obviously, such incidents make the robot lose
its position, and therefore are well suited to test localization

under extreme situations.
Here we found adaptive sampling to be superior to MCL

with fixed sample sets. Figure 10 shows the comparison.
The top curve depicts the frequency with which the error
was larger than 1 meter (our tolerance threshold), for differ-
ent sample set sizes. The bottom line gives the same result
for the adaptive sampling approach. As is easy to be seen,
adaptive sampling yields smaller error than the best MCL
with fixed sample set sizes. Our results have been obtained
by averaging data collected along 700 meters of high-speed
robot motion.

Conclusion and Future Work
This paper presented Monte Carlo Localization (MCL), a
sample-based algorithm for mobile robot localization. MCL
differs from previous approaches in that it uses randomized
samples (particles) to represent the robot’s belief. This leads
to a variety of advantages over previous approaches: A sig-
nificant reduction in computation and memory consumption,
which leads to a higher frequency at which the robot can in-
corporate sensor data, which in turn implies much higher
accuracy. MCL is also much easier to implement than pre-
vious Markov localization approaches. Instead of having to
reason about entire probability distributions, MCL randomly
guessespossible positions, in a way that favors likely posi-
tions over unlikely ones. An adaptive sampling scheme was
proposed that enables MCL to adjust the number of sam-
ples in proportion to the amount of surprise in the sensor
data. Consequently, MCL uses few samples when tracking
the robot’s position, but increases the sample set size when
the robot loses track of its position, or otherwise is forced to
globally localize the robot.

MCL has been tested thoroughly in practice. As our em-
pirical results suggest, MCL beats previous Markov local-
ization methods by an order of magnitude in memory and
computation requirements, while yielding significantly more
accurate results. In some cases, MCL succeeds where grid-
based Markov localization fails.

In future work, the increased efficiency of our sample-
based localization will be applied to multi robot scenarios,
where the sample sets of the different robots can be synchro-
nized whenever one robot detects another. First experiments
conducted with two robots show that the robots are able to



localize themselves much faster when combining their sam-
ple sets (Foxet al. 1999). Here, the robots were equipped
with laser range-finders and cameras to detect each other.
We also plan to apply Monte Carlo methods to the problem
of map acquisition, where recent work has led to new statis-
tical frameworks that have been successfull applied to large,
cyclic environments using grid representations (Thrun, Fox,
& Burgard 1998).
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